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Abstract—This paper proposed a new spectral graph clustering model by casting the non-categorical spatial data 

sets into an undirected graph.  Decomposition of the graph to Delaunay graph has been done for computational 

efficiency. All pair shortest path based model has been adapted for the creation of the underlying Laplacian matrix 

of the graph. The similarity among the nodes of the graph is measured by a random selection based correlation 

coefficients. The effectiveness as well as the efficiency of the proposed model has beentasted and measuredwith 

standard data and the performances are compared with that of existing standard models. 

Keywords—Graph Clustering;Delaunay Triangulation;All-pair Shortest Path Distance; Similarity Matrix; Spectral 

Clustering. 

 

1. INTRODUCTION 

 

Clustering plays a major role in the field of data science and decision support systems. Clustering is a learning technique 

which is unsupervised, i.e. learning takes place without the help of any training dataset [1].Clustering separates the data 

objects into meaningful groups or clusters based on proximity measures among the data objects [2]. This technique of 

grouping objects, based on similarity measures,is used for grouping documents, separating images and for many other such 

tasks. For this reason, clustering plays an important role in the field of pattern recognition.  

 

There are several standard clustering algorithms exist in literature. A good overview of them has been discussed by Jain 

and Dubes[3]. A further development in this field has been reported by Xu&Wunsch-II[4]and Everittet al[5]. Out of 

several branches in clustering, graph based clustering draws much of the attentions of the research communities in recent 

days. This is because, graph is a natural way of representation of today’s real life problems;especially in network based 

problems. Graph theoretic clustering algorithms are useful for producing clusters where the problem is modeled by using 

graphs.Graphs are very useful to represent high dimensional unstructured data. So, graph based clustering for large, high 

dimensional datasets gaining popularity gradually. 

 

A lot of research in the field of graph clustering has been done across the globe. Clustering using structural properties of 

weighted undirected graph has been used by Newman and Girvan[6]. Their idea is based on the node betweenness property 

of a graph. A novel betweenness property, based on shortest path, was coined by Freeman[7]. According to him, node 

betweenness is defined for each nodeas the number of shortest paths in the graph that pass through that node. The 
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betweenness of an edge as defined by Newman and Girvan[6] is the number of shortest paths connecting any pair of nodes 

that pass through the edge. They have used this property for clustering.  

 

The proposed algorithm adapts a different approach. Instead of using this betweenness property, in this paper a new 

approach of all-pair shortest path has been proposed, in order to cluster an undirected graph. Some recent research on 

shortest path based clustering is done by Nawaz et al[8]. Different standard techniques used in graph clustering has been 

discussed in a survey paper by Schaeffer[9]. 

 

Spectral graph theory deals with the connectivity structures in a graph by casting a graph to an algebraic structure and by 

analyzing the spectra of the same. The connectivity and Spectral Graph has been discussed by Mohar[10]. A standard 

clustering method using spectra of graph has been proposed by Shi &Malik[11]. A good survey on spectral clustering has 

been made by Luxburg[12].The field of spectral clustering is being contributed by Spielman and Teng[13]. The general 

references on Laplacian matrix can be found in the work of Bapat[14] and Brouwer&Haemers[15].  Some current research 

in the topic has been done by Li et al[16] and Chrysouli et al[17]. Some local distribution based spectral clustering is 

proposed by Roy et al[18][19]. Jiaet al[20] addressed the latest research progress in the field. 

 

The proposed model uses a computational geometry based graph clustering. Compuational Geometry is the branch of 

algorithms which deals with geometry of spatial domain and Delaunay triangulation is a branch of computational 

geometry. Delaunay Triangulation of a set of points is a planar decomposition which maintains the proximity among the 

points [21].Clustering using Delaunay triangulation is proposed by Jia LV [22] and Deng et al[23]. A Fuzzy clustering 

using Delaunay triangulation is proposed by Roy et al[24]. The Spectra of Delaunay triangulation is analyzed by Chen et 

al[25]. This paper proposed to find the all pair shortest path matrix of the adjacency matrix of the Delaunay graph for 

spatial data clustering. 

 

The rest of the paper is organized as follows. Graph and some of its representations are discussedin Section II.Eigen 

system of a graph has also been discussed here.This section also discussed about the Delaunay Triangulation, Shortest Path 

matrix and outlined two well-known clustering algorithms. The proposed methodis given in Section 3.Experimental setup 

and results, along the comparisons of the same with that of the existing algorithms has been discussed in Section 4. The 

concluding remarks are given in Section 5 and references are drawn at the end. 

 

2. GRAPH,GRAPH MATRICES AND EIGENVALUES AND EIGENVECTORS OF GRAPH 

This section discussed the essential graph properties used in the present paper. Graph is problem representation model 

which is used to represent pairwise relationship between objects. The nodes of the graph represent the objects and the 

edges represent the relationship between the nodes which is always a pairwise relationship. A simple graph is an 

undirected graph with no self-loops and no parallel edges between nodes. 

 

There are several algebraic representation of a graph available. Out of which,Adjacency Matrix, Laplacian Matrix and 

Incidence Matrix are frequently used for solving problems related to clustering. The Adjacency matrix A, of an undirected 

graph G, is a symmetric matrix of order |V|×|V| where |V|isthe number of vertices of the graph G. The (i, j)-th entry Aijof A 

is 1 if nodes i and j are agrees the  relationshipand 0 otherwise.The leading diagonals i.e. Aii, i = 1, 2…|V|, are all zeroes if 

G is simple graph.If the graph is an weighted graph, then Aii=w, for i = 1, 2… |V|, where w is the weight of the edge (i,j). 

That means, 

 

  w, if i and j are adjacent 

  Aij = 

  0, otherwise 

The Laplacianmatrix L of the graph G is defined as, 

 

  di, if i= j 

  Lij = 

  -Aij, ifi ≠ j 

 

wheredi is the sum of values of i-th row of the adjacency matrix A. The Laplacian matrix can be written as, 

 L = D – W 

whereD is an|V|×|V| diagonal matrix and whose i-th entry diis equal to i-th row-sum of the elements of the adjacency 

matrix, i = 1, 2, ……, |V|and W is the weight matrix of the graph G. Such type of Laplacian matrix is called the Un-

normalized LaplacianMatrix of the graph G. 
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There exist other variants of Graph Laplacians also. These are known as Normalized Symmetric Laplacian and Random 

WalkLaplacian. Random Walk Laplacian is more popular in the field of clustering though the Symmetric Laplacian is also 

used.  The definitions of the two are shown in equation 1 and 2 respectively. 

 

 Lsym = I - D
-1/2

W D
-1/2

(1) 

 Lrw = I – D
-1

W(2) 

 

Lsym is symmetric and Lrw is closely related to random walk in a weighted graph.L, Lsym and Lrw are all positive semi-

definite and have |V| non-negative real-valued eigenvalues. 0 is the smallest eigenvalue of all these threeLaplacians. 

 

Among these |V| Eigenvalues, different eigenvalues hold some specific spectral properties and the corresponding 

eigenvectors carry different information that can be used to cluster the graph [12].The eigenvector corresponding to the 

second smallest eigenvalue, for example, ofa |V|×|V| Laplacian matrix of a graph, is known as the Fiedler vector. 

 

In the present paper a planar graph has been considered for clustering. To keep proximity information intact, a dense planar 

graph has been chosen. In graph theory, maximal Planar Graphs are known as triangulations. Amaximal planar subdivision 

can be defined as a subdivision such that no edge connecting two nodes can be added to this subdivision without 

destroying its planarity. The present paper considers such type of graph for data clustering. 

 

A Delaunay Triangulation of a set of points P in a plane is a special type of triangulation which forms a planar graph where 

none of the points in P is inside the circle that circumscribes any triangle in that triangulation[21]. 

 

The shortest path distance is the distance between two nodes in a graph, where the sum of the weights of its component 

edges is minimized. The all-pair shortest path problem finds the shortest path between every pair of nodes of a graph. The 

graph may contain negative edges but no negative cycles. 

 

In this paper, two well-known clustering algorithms — K-means Clustering algorithm and Hierarchical Clustering 

algorithm — are used for comparison of the result of the proposed model.  

 

The K-Means algorithm worksin an iterative manner. It assumes the number of clusters K as a priory and minimizes the 

error function
2

1 1

j |||| X i

K

i

N

j

KE −=∑∑
= =

,where K is the number of clusters, and iK  is the center of i
th

 cluster. 

 

Hierarchical clustering algorithm groups the data in two ways — either by first considering all data objects as a single 

cluster (root) and next dividing the root into a number of small clusters (Divisive Clustering algorithm) or works in a 

reverse order. i.e. forms clusters of singleton nodes and merges them up (Agglomerative Clustering algorithm). 

 

3. THE PROPOSED METHOD 

The proposed model is a shortest path similarity based Laplacian clustering model. The motivation behind the model 

comes from the random walk nature of graphs. The random walk has been applied to Delaunay Triangulation of the 

original graph and on its Laplacian. 

 

A random walk on a graph is a stochastic process which randomly jumps from node to node [9]. If a cluster is dense, then 

it stays for long time within that cluster and hardly jumps out of it. The transition matrix T of the random walk is defined 

by, 

 T = D
-1

W 

whereD is the degree diagonal matrix and W is the weight matrix. Random walk T has connection with Normalized 

LaplacianLrw = I – T. 

 

If there exists shortest path between the data vectors u and v and that distance be x, then the data vectors whose shortest 

path to the data vector v are almost same as x will be in the same cluster, otherwise they will belong to the different cluster. 

To achieve the above mentioned goal, first the Delaunay Triangulation, of the graph representing the original dataset, has 

been computed. After this, the adjacency matrix of the Delaunay graph has been created. On this adjacency matrix, all-pair 

shortest path distance matrix has been computed. Then, some percentage (20% to 50%) of the original data points in the 

dataset are chosen randomly. The correlation of these data points is measured.If the correlations areless than a 
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predetermined threshold value then theyare set to zero. The correlation of a data vector to itself is also assigned to 0. Thus, 

a new adjacency matrix is formed with all leading diagonals set to zero. 

 

Next the Normalized Laplacian matrix (Random Walk) is formed from the newly created adjacency matrix. Eigenvalues 

and eigenvectors of this Laplacian matrix is calculated and the eigenvectors related to K smallest eigenvalues have been 

considered for clustering using known clustering algorithms that have already discussed in Section 2. Following is the 

outline of the proposed model in algorithmic form. 

 

Proposed Algorithm: 

[The algorithm assumes that the number of clusters K,is known in advance.] 

 

Input:Data Vector Set D, cut-off threshold value for selecting correlation of data vectors, percentage P for selecting 

random data vectors from the data set D and Number of Clusters K 

Output: K numbers of clusters 

 

Step 1: Compute Delaunay graph DG of the graph represented by Input data vector D. 

Step 2: Compute the Adjacency matrix of this Delaunay graph DG. 

Step 3: Compute the All-pair Shortest Path matrix SP from DG. If there is no edge between two data vectors, then set 

weight corresponding to that edge to a large amount. 

Step 4: Select P percent of random data vectorsfrom the All-pair Shortest Path matrix SP. 

Step 5: Evaluate the correlation matrix CM of this random data set.Set the correlation less than the threshold value to zero; 

also make the correlation of a data vector to itself to zero. 

Step 6: Compute the Laplacian matrix LM from this correlation matrix CM using Random-Walk LaplacianLrw. 

Step 7: Calculate the Eigenvalues and Eigenvectors of the Laplacian matrix LM. 

Step 8: Choose eigenvectors associated with the K smallest eigenvalues and apply K-means Clustering or Hierarchical 

Clustering algorithm to this vector to produce K numbers of clusters. 

 

Correctness of the Model: 

 

This subsection deals with the correctness of the proposed model.Firstly, the original graph has been decomposed to 

Delaunay graph. In this process the shortest path will slightly differ. But this is not less than a certain factor. Secondly, the 

shortest path proximity will remain invariant. i.e., the points which were close in the original graph will remain close in the 

Delaunay graph and the vice-versa because Delaunay graph ensures the proximity. 

 

Third important point is, shortest path distances are metric. i.e. they follow the triangular inequality. Because of this 

property of shortest path, the correlation of the shortest path distances from the two close points is high. i.e., if a point C is 

far from a point A and B is close to A, then C is also far from B. If shortest path would not be a metric, then this 

assumption would not be true. 

 

The final important point is, that the random walk Laplacian simulates random walk in a graph. i.e. a random walk will 

take longer time to come out from a dense sub-graph and relatively shorter time to come out from a sparse sub-graph. From 

the above mentioned discussions, it is clear that the proposed algorithm will work correctly to identify the clusters.  

 

4. EXPERIMENTS AND RESULTS 

 

The performance of the proposed model has been tasted with two standard datasets namely iris and flame.  The benchmark 

datasetirisis due to UCI Machine Learning Unit [26] and the flame dataset is due to [27]. 

 

Iris is a dataset of 150 instances of three types of flowers namely Iris Setosa, Iris Versicolor and Iris Virginica. All of these 

three types of flowers have 50 instances in each. Among these three types of flowers, only one type of flower is linearly 

separable from the other two and no missing attributes exist there. Each instance has four attributes. These attributes are 

Sepal length, Sepal width, Petal length and Petal width. 

Flame dataset has 240 instances and two attributes. Flame dataset has two clusters. These clusters are not well separated. 

The clusters are not linearly separable also. One of the clusters is not even convex shaped.  The Iris data set is selected 

because it contains both linearly separable and non-separable classes. The flame dataset is chosen because it consists of 

clusters of non-convex shape. The performances of the proposed model will thus be tasted in case of non-separable clusters 

as well as arbitrary shaped clusters.  
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To analyse the performances, external clusters validity indexes are used. These indices are used to measure the similarity 

between results produced by two algorithms. In the present paper, the similarity between the computed result and the actual 

result has been considered for all the models. External indices which have been used for comparison are Czekanowski-

Dice, Folkes_Mallows, Hubert, Jaccard, Rogers-Tanimotoand  Russel-Rao.A detail discussion on such and other indexes 

can be found in the work of Sahaet al[28] and Roy et al [29]. 

 

The performance of the proposed model is compared with that of two standard models. These are K-Means model and 

Hierarchical Model (Average Linkage). 

 

 
Fig. 1.Clustering of iris data using Proposed Algorithm 

 

The result obtained by the proposed algorithm on iris dataset is shown in Figure 1.From this figure it is clear that our 

proposed algorithm can successfully cluster the linearly non-separable classes of iris data. 

 

TABLE I 

COMPARATIVE STUDY OF THE RESULTS OF K-MEANS, HIERARCHICAL AND PROPOSED ALGORITHM ON IRIS DATASET. 

External Indices K-Means Algorithm Hierarchical Algorithm Proposed Algorithm 

CZ-Dice 0.8206 0.8400 0.8890 

Folkes Mallows 0.8208 0.8407 0.8898 

Hubert 0.7305 0.7597 0.8350 

Jaccard 0.6958 0.7248 0.8014 

Rogers Tanimoto 0.8037 0.8318 0.8752 

Russel Rao 0.2751 0.2837 0.2958 

 

The comparative study between Hierarchical(average linkage), K-Means and the proposed algorithm on iris dataset in 

different external indices is shown in Table I. Observing the results given in Table I, it is clear that the proposed algorithm 

performs better on  iris dataset.  In all the indexes, the proposed model gains highest value. 
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Fig. 2.Clustering of flame data using Proposed Algorithm 

The performance of the proposed model on flame dataset has been shown in figure 2. It is clear from the figure that the 

performance of the algorithm is almost accurate except at the touching point of the two clusters. Out of 240 points, only 

four points are identified wrongly. 

TABLE II 

COMPARATIVE STUDY OF THE RESULTS OF K-MEANS, HIERARCHICAL AND PROPOSED MODEL ON FLAME DATASET. 

External Indices K-Means Algorithm Hierarchical Algorithm Proposed Algorithm 

Czek-Dice 0.7581 0.7306 0.9696 

Folkes Mallows 0.7586 0.7311 0.9696 

Hubert 0.5012 0.4433 0.9339 

Jaccard 0.6105 0.5756 0.9409 

Rogers Tanimoto 0.5998 0.5638 0.9363 

Russel Rao 0.3921 0.3783 0.5243 

 

The comparative study of the performances of the standard models and that of proposed model is shown in Table II. It is 

clear from the table that the proposed model’s performance is far better than the existing models. 

5. CONCLUSION AND FUTURE SCOPE 

This paper proposes a new data clustering method by using all-pair shortest path distances of graph and its Laplacian 

spectra. The performance of the proposed model is quite satisfactory in various situations. It can handle non-separability as 

well as non-convexity of the clusters. Though the performance of the proposed model is satisfactory, nevertheless, there 

are scopes of further improvements. Instead of using adjacency matrix, other graph matrices can be used and instead of 

using laplacian spectra, spectra of other types can also be considered.Similarity measures using commute distance of the 

graph can also be used for further tuning of the performances. 
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