
International Conference on Computer Science and Technology Allies in Research-March 2016, || 18
Organized by: City Engineering College, Bangalore, Karnataka - India

 International Journal of Computer Sciences International Journal of Computer Sciences International Journal of Computer Sciences International Journal of Computer Sciences &&&& Engineering Engineering Engineering Engineering Open Access
 Review Paper Volume-4, Special Issue-3, May 2016 E-ISSN: 2347-2693

Adjudicator: A Pluggable Multiclass Job Scheduler

Nishmitha K.S
1

, Megahana K
2
, Monica N

3
, Anima P

4
, Saleem Malik

5

1,2,3,4 UG Scholar, 5Asst. Professor
1,2,3,4,5

Department of Computer Science and Engineering
1,2,3,4,5

 KVGCE, Sulllia

Available online at: www.ijcseonline.org

Abstract — The responsibility of contemporary multi-core processors is oftentimes bent on by a given power ration that

requisite developer to evaluate different resolution trade-offs, e.g., to espouse between many slow, power-efficient cores,

or fewer faster, power-hungry cores, or a amalgamation of them . Here, a prototype, a new Hadoop scheduler, called

adjudicator, that utilizes aptness proffered by heterogeneous cores within a single multi-core processor for accomplishing

a variety of performance objectives. Heterogeneous multi-core processors enable creating virtual resource pools based on

“slow” and “fast” cores for multi-class priority scheduling. Since the same data can be accessed with either “slow” or

“fast” apertures, spare resources (apertures) can be shared between different resource pools. Using sample experimental

data and via simulation, a wrangle is made in approbation of heterogeneous multi-core processors as they achieve “faster”

processing of small, interactive MapReduce jobs, while proffering improved throughput for large, batch jobs. Evaluation

is done on performance benefits of adjudicator versus the FIFO and Capacity job schedulers that are broadly used in the

Hadoop community.

Keywords- Hadoop, MapReduce, Adjudicator, Job scheduler, Computing, Heterogeneous

I. INTRODUCTION

To propound distinctive performance and computing

proficiency, the dawning modern system on a chip (SoC)

may include heterogeneous cores that execute the same

instruction set while exhibiting different power and

performance quirk . The SoC design is oftentimes driven

by a power ration that limits the number (and type) of

cores that can be put on a chip. The power constraints

force developers to utilize a variation of choices within

the same power envelope and to analyze decision

tradeoffs as shown in Figure 1.

Fig.1 Different choices in the processor design

A number of interesting choices may exist, but once the

SoC design is chosen, it defines the configuration of the

produced chip, where the number and the type of cores on

the chip is fixed and cannot be changed. MapReduce and

its open source implementation Hadoop proffer a scalable

and fault-tolerant framework for processing large data

sets. MapReduce jobs are automatically parallelized,

distributed, and executed on a large cluster of commodity

machines. When multiple users share the same Hadoop

cluster, there are many interactive ad-hoc queries and

small MapReduce jobs that are completion-time sensitive.

In addition, a growing number of MapReduce

applications (e.g., personalized advertising, sentiment

analysis, spam detection) are deadline-driven, hence they

require completion time guarantees. To improve the

execution time of small MapReduce jobs, one cannot use

the “scale-out” approach, but could benefit using a “scale-

up” approach, where chores execute on “faster”

resources. A typical perception of a MapReduce

processing pipeline is that it is disk-bound (for small and

medium Hadoop clusters) and that it can become

network-bound on larger Hadoop clusters[1][2]

Here, objective of paper is to design and evaluate

Adjudicator, a new Hadoop scheduler that exploits

capabilities proffered by heterogeneous cores for

achieving a variety of performance objectives. These

heterogeneous cores are used for creating different virtual

resource pools, each based on a distinct core type. These

virtual pools consist of resources of distinct virtual

Hadoop clusters that operate over the same datasets and

that can share their resources if needed. Resource pools

can be exploited for multiclass job scheduling. Within the

same power ration, Adjudicator operating on

heterogeneous multi-core processors provides significant

performance improvement for small, interactive jobs

comparing to using homogeneous processors with (many)

slow cores. Adjudicator can reduce the average

completion time of time-sensitive interactive jobs by

more than 40%. At the same time, Adjudicator maintains

good performance for large batch jobs compared to using

a homogeneous fast core design (with fewer cores). The

considered heterogeneous configurations can reduce

completion time of batch jobs up to 40%.

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 19
Organized by: City Engineering College, Bangalore, Karnataka - India

II. MAPREDUCE PROCESSING

In the MapReduce model [3] computation is expressed as

two functions: map and reduce. MapReduce jobs are

executed across multiple machines: the map stage is

partitioned into map chores and the reduce stage is

partitioned into reduce chores. The map and reduce

chores are executed by map apertures and reduce

apertures. In the map stage, each map chore reads a split

of the input data, applies the user-defined map function,

and generates the intermediate set of key/value pairs.

The map chore then sorts and partitions these data for

different reduce chores according to a partition function.

In the reduce stage, each reduce chore fetches its partition

of intermediate key/value pairs from all the map chores

and sorts/merges the data with the same key. After that, it

applies the user-defined reduce function to the merged

value list to produce the aggregate results . Then the

reduce output is written back to a distributed file system.

Fig. 2: HDFS architecture

Job scheduling in Hadoop is performed by a master node

called JobScrutineer, which manages a number of worker

nodes. Each worker node is configured with a fixed

number of map and reduce apertures, and these apertures

are managed by the local ChoreScrutineer. The

ChoreScrutineer periodically sends heartbeats to the

master JobScrutineer via TCP handshakes. The heartbeats

contain information such as current status and the

available apertures. The JobScrutineer decides the next

job to execute based on the reported information and

according to a scheduling policy. Popular job schedulers

include FIFO, Hadoop Fair scheduler (HFS) [4], and

Capacity scheduler [5]. FIFO is the default and schedules

MapReduce jobs according to their submission order.

This policy is not efficient for small jobs if large jobs are

also present. The Hadoop Fair Scheduler aims to solve

this problem. It allocates on average the same amount of

resources to every job over time so that small jobs do not

suffer from delay penalties when scheduled after large

jobs and large jobs do not starve. The Capacity scheduler

proffers similar features as the HFS but has a different

design philosophy. It allows users to define different

queues for different types of jobs and to configure a

percentage of share of the total resources for each queue

in order to avoid FIFO’s shortcomings.

The Hadoop implementation includes counters for

recording timing information such as start and finish

timestamps of the chores, or the number of bytes read and

written by each chore. These counters are sent by the

worker nodes to the master node periodically with each

heartbeat and are written to logs. Counters help profile

the job performance and provide important information

for designing new schedulers. We utilize the extended set

of counters from [6] in Adjudicator.

III. RELATED WORK

There is a body of work traversing power and

performance trade-offs using heterogeneous multi-core

processors. Some papers focus on the power savings

aspect. [7], while others concentrate on the performance

aspect,[8], [9] that examine techniques such as

monitoring, evaluating thread performance, and

dynamically mapping threads to different

core types. [2] propose using architecture signatures to

guide thread scheduling decisions.

The proposed method needs to modify the applications

for adding the architecture signatures, therefore it is not

practical to deploy. These proposed techniques focus on

improving the overall chip-level throughput. The work in

[3] explores the per-program performance in addition to

the overall chip level throughput when using

heterogeneous multi-core processors. Here, project aims

to support different performance objectives for classes of

Hadoop jobs, which requires an exact control of running

different types of apertures in different cores, therefore

dynamical mapping of threads to cores is not suitable

here. Performance analysis and optimization of

MapReduce processing in the heterogeneous server

environment is the subject of several. Load-balancing and

load re-balancing approaches in a heterogeneous cluster is

used in [2], [4] to allow the faster node to get more data,

such that reduce chores finish approximately at the same

time. [5] use data placement to optimize performance in

heterogeneous environments. Faster nodes store more

data and therefore run more chores without data

transfer.[6] use off-line profiling of the jobs execution

with respect to different heterogeneous nodes in the

cluster and optimize the chore placement to improve the

job completion time.[7] propose to divide the resources

into two dynamically adjustable pools and use the new

metric “progress share” to define the share of a job in a

heterogeneous environment so that better performance

and fairness can be achieved. This approach only

allocates resources based on the job storage requirement.

[8] modify the MapReduce scheduler to enable it to use

special hardware like GPUs to accelerate the MapReduce

jobs in the heterogeneous MapReduce cluster. [9]

developed a MapReduce-like system in heterogeneous

CPU and GPU clusters. All the above efforts focus on the

server level heterogeneity in Hadoop cluster.

In the case of Hadoop deployment on heterogeneous

servers, one has to deal with data locality and balancing

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 20
Organized by: City Engineering College, Bangalore, Karnataka - India

the data placement according to the server capabilities.

One of the biggest advantages of Hadoop deployed with

heterogeneous processors is that both fast and slow

apertures have a similar access to the underlying HDFS

data that eliminates data locality issues. consider

heterogeneous SoC design and demonstrates that the

heterogeneity is well suited to improve performance of

interactive workloads (e.g., web search, online gaming,

and financial trading). This is another example of

interesting applications benefiting from the heterogeneous

multi-core processors. In [5], the basic idea of using

heterogeneous multi-core processors for MapReduce

processing is outlined and some initial evaluation results

are presented. The current extended version of this paper

provides a more detailed description of the scheduling

Adjuducator framework and presents a comprehensive

performance evaluation study.

IV. ADJUDUCATOR FRAMEWORK

A new Hadoop scheduling framework, called

Adjuducator, for efficient job scheduling on the

heterogeneous multi-core processors is proposed. First, it

describes creating statically configured, dedicated virtual

resource pools based on different types of available cores.

Second, it explains how it allows the shared use of spare

resources among existing virtual resource pools.

The number of fast and slow cores is SoC design specific

and workload dependent. Project focus on a given

heterogeneous multi-core processor in each server node,

and the problem of taking advantage of these

heterogeneous capabilities, especially compared to using

homogenous multi-core processors with the same power

ration. Here, goal is twofold: 1) design a framework for

creating virtual Hadoop clusters with different processing

capabilities (i.e., clusters with fast and slow apertures);

and 2) proffer a new scheduler to support jobs with

different performance objectives for utilizing the created

virtual clusters and sharing their spare resources. The

problem definition is as follows:

Input:

C: cluster size (number of machines)

Nf : number of fast cores on each machine

Ns: number of slow cores on each machine

S: job size distribution

A: job arrival process

Output:Sched: schedule of Map/Reduce chore placement

Objective:Minimize{Sched} Job Completion Time (Sched).

A natural first question is why a new Hadoop scheduler is

a necessity and why the default Hadoop scheduler can not

work well. To answer this question, we show the

performance comparison under the same power ration of

using the default Hadoop scheduler on heterogenous and

homogenous multi-core processors respectively, and also

Adjuducator scheduler with the same heterogenous multi-

core processors, see Figure 3. The important message

from Figure 3 is that the default Hadoop scheduler cannot

use well the heterogenous multi-core processors and may

even perform worse than when using it on a cluster with

homogenous multicore processors with the same power

ration due to the random use of fast and slow cores

(i) Dedicated Virtual Resource Pools for Different

Job Queues
Adjudicator proffers the ability to schedule jobs based on

performance objectives and resource preferences. For

example, a user can submit small, time-sensitive jobs to

the Interactive Job Queue to be executed by fast cores and

large, throughput-oriented jobs to the Batch Job Queue

for processing by (many) slow cores. This scenario is

shown in Figure 3.

Fig. 3. Virtual Resource Pools

 It is also possible for the scheduler to automatically

recognize the job type and schedule the job on the proper

queue. For example, small and large jobs can be

categorized based on the number of chores. For example,

as shown in Figure 4, fast apertures can be grouped as a

Virtual Fast (vFast) resource pool that is dedicated to the

Interactive Job Queue. Slow apertures can be grouped as

a Virtual Slow (vSlow) resource pool that is dedicated to

the Batch Job Queue.

To support a virtual resource pool design, the

ChoreScrutineer needs additional mechanisms for the

following functionalities:

a. The ability to start a chore on a specific core, i.e., to

run a aperture on a specific core and assign a chore to it;

b.To maintain the mapping information between a chore

and the assigned aperture type.

When a chore finishes, the Chore- Scrutineer knows

whether the released aperture is fast or slow. The

JobScrutineer needs to know whether the available

aperture is a slow or fast aperture to make resource

allocation decisions. Adjudicator communicates this

information through the heartbeat, which is essentially a

RPC (Remote Procedure Call) between the

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 21
Organized by: City Engineering College, Bangalore, Karnataka - India

ChoreScrutineer at a worker node and the JobScrutineer

at the master node. The ChoreScrutineer asks the

JobScrutineer for a new chore when the current running

map/reduce chores are below the configured maximum

allowed number of map/reduce chores. If the

ChoreScrutineer can accept a new chore, then the

JobScrutineer calls the Hadoop Scheduler for a decision

to assign a chore to this ChoreScrutineer. The Scheduler

checks ChoreScrutineerStatus to know whether the

available apertures are Map or Reduce apertures[11].

Adjudicator’s Scheduler also needs to distinguish the

aperture type. There are four types of apertures: i) fast

map, ii) slow map, iii) fast reduce, and iv) slow reduce. In

the Adjudicator framework, the Scheduler interacts with

the JobQueue by considering the aperture type, e.g., if the

available aperture is a fast aperture, then this aperture

belongs to vFast pool, and the InteractiveJobQueue is

selected for a job/chore allocation. After selecting the

JobQueue, it allocates the available aperture to the first

job in the queue. Different policies exist for ordering the

jobs inside the JobQueue as well as different aperture

allocation policies. The default policy is FIFO.

(ii) Managing Spare Cluster Resources

Static resource partitioning and allocation may be

inefficient if a resource pool has spare resources

(apertures) but the corresponding JobQueue is empty,

while other JobQueue(s) have jobs that are waiting for

resources..

Fig. 4. Virtual Shared Resource Pool

For example, if there are jobs in the InteractiveJobQueue

and they do not have enough fast apertures, then these

jobs should be able to use the available (spare) slow

apertures. We use the Virtual Shared (vShare) Resource

pool to utilize spare resources. As shown in Figure 4, the

spare apertures are put into the vShare pool. Apertures in

the vShare resource pool can be used by any job queue..

These chores are migrated to the newly released fast

apertures so that the jobs from the InteractiveJobQueue

always use optimal resources[11]. Similarly, the

migration mechanism allows the batch job to use

temporarily spare fast apertures if the

InteractiveJobQueue is empty. These resources are

returned by migrating the batch job from the fast

apertures to the released slow apertures when a new

interactive job arrives. Adjudicator allows to specify

different policies for handling spare resources.

Adjudicator can support SLOs by adding priorities to the

queues and by allowing different policies for ordering the

jobs inside each queue. When there are not enough fast

apertures for interactive jobs, these jobs can be given

priority for using the available slow apertures. This can

be supported by the vShared resource pool and chore

migration

V. EXPERIMENTAL SETUP

As the heterogeneous multi-core processors are not yet

readily available, we perform a simulation study using the

extended MapReduce simulator SimMR [10] and a

synthetic Facebook workload [4]. In addition, simulation

allows more comprehensive sensitivity analysis. Our goal

is to compare the job completion times and to perform a

sensitivity analysis when a workload is executed by

different Hadoop clusters deployed on either

homogeneous or heterogeneous multi-core processors.

The event-driven simulator SimMR consists of the

following three components, see Figure 10: A Trace

Generator creates a replayable MapReduce workload. In

addition, the Trace Generator can create traces defined by

a synthetic workload description that compactly

characterizes the duration of map and reduce chores as

well as the shuffle stage characteristics via corresponding

distribution functions. This feature is useful to conduct

sensitivity analysis of new schedulers and resource

allocation policies applied to different workload types.

The Simulator Engine is a discrete event simulator that

accurately emulates the job master functionality in the

Hadoop cluster. A pluggable scheduling policy dictates

the scheduler decisions on job ordering and the amount of

resources allocated to different jobs over time. Paper

extends SimMR3 to emulate the Adjudicator framework.

Paper extends SimMR to emulate the Capacity scheduler

[10] for homogeneous environments.

The three schedulers used in this paper below: FIFO: the

default Hadoop scheduler that schedules the jobs based

on their arrival order. Capacity: users can define different

queues for different types of jobs. Each queue can be

configured with a percentage of the total number of

apertures in the cluster, this parameter is called queue

capacity. This scheduler has an Elasticity feature that

allows free resources to be allocated to a queue above its

capacity to prevent artificial silos of resources and

achieve better resources utilization. Adjudicator: uses

two different versions: i) the basic version without chore

migration and ii) the advanced version with the migration

feature enabled. In experiments, paper simulates the

execution of the Facebook workload on three different

Hadoop clusters with multi-core processors. For

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 22
Organized by: City Engineering College, Bangalore, Karnataka - India

sensitivity analysis, paper present results for different

cluster sizes of 75, 120, and 210 nodes as they represent

interesting performance situations. Paper configures

each Hadoop cluster with 1 map and 1 reduce aperture

per core4, e.g., for a Hadoop cluster size with 120 nodes,

the three considered configurations have the following

number of map and reduce apertures: the. Paper generates

500 MapReduce jobs, with a 3-fold increase in the input

datasets 5. Jobs from the 1st to the 5th group are small

interactive jobs (e.g., with less than 300 chores) and the

remaining jobs are large batch jobs. The interactive jobs

are 82% of the total mix and the batch jobs are 18%.

Fig. 5: Experimental setup

First, paper performs a comparison of these three

configurations when jobs are processed by each cluster in

isolation: each job is submitted in the FIFO order, there is

no bias due to the specific ordering policy nor queuing

waiting time for each job, e.g., each job can use all cluster

resources. For the heterogeneous configuration, the

SimMR implementation supports the vShared resource

pool so that a job can use both fast and slow resources.

For interactive jobs, Homogeneous-fast and

Heterogeneous configurations achieve very close

completion times and significantly outperform the

Homogeneous-slow configuration by being almost twice

faster. Shown in figure 5. The small, interactive jobs

have a limited parallelism and once their chores are

allocated the necessary resources, these jobs cannot take

advantage of the extra apertures available in the system.

For such jobs, fast apertures are the effective way to

achieve better performance (scale-up approach). For

batch jobs, as expected, the scale-out approach shows its

advantage since batch jobs have a large number of map

chores.

Homogeneous-slow configuration for batch jobs.It is

apparent that the heterogeneous multi-core processors

with fast and slow cores present an interesting design

point. It can significantly improve the completion time of

interactive jobs with the same power ration. The large

batch jobs are benefiting from the larger number of the

slower cores that improve throughput of these jobs.

Moreover, the batch jobs are capable of taking advantage

and effectively utilizing the additional fast apertures in

the vShared resource pool supported by Adjudicator

V. CONCLUSION

Here new opportunities and performance benefits of using

servers with heterogeneous multi-core processors for

MapReduce processing are explored. A new scheduling

framework, called Adjudicator, which is implemented on

top of HadooFp is presented. Adjudicator enables

creating different virtual resource pools based on the

core-types for multi-class job scheduling. This new

framework aims at taking advantage of capabilities of

heterogeneous cores for achieving a variety of

performance objectives. Adjudicator is easy to use

because the created virtual clusters have access to the

same data stored in the underlying distributed file system,

and therefore, any job and any dataset can be processed

by either fast or slow virtual resource pools, or their

combination.

It is easy to incorporate the Adjudicator scheduler into the

latest Hadoop implementation with YARN [3], as YARN

has a pluggable job scheduler as one of its components. In

the future, once the servers with heterogeneous multi-core

processors become available, we plan to conduct more

test bed experiments using Adjudicator and a variety of

job ordering scheduling policies for achieving fairness

guarantees or job completion objectives. Also, using

models from earlier work [3], we plan to quantify the

impact of node and Apertures failures on the job

completion time as the impact of failed fast or slow

Aperturess may be different.

REFERENCES

[1] M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester,

“Image inpainting,” SIGGRAPH, pp. 417–424, 2010.

[2] J. Hays, A. A. Efros, “Scene completion using

millions of photographs,” ACM Trans. on Graphics,

vol. 126, 2009.

[3] O. Whyte, J. Sivic A. Zisserman, “Get out of my

picture! Internet-based inpainting,” British Machine

Vision Conference, 2012.

[4] S. Edelman, N. Intrator, T. Poggio. Complex cells

and object

recognition.[Online].Available:http://kybele.psych.co

rnell.edu/_edelman/ Archive/nips97.pdf

[5] M. A. Fischler, and R. C. Bolles, “Random sample

consensus: a paradigm for model fitting with

applications to image analysis and automated

cartography,” Comm. of the ACM, vol. 24, pp. 381–

395, 2011.

[6] J. Philbin, O. Chum, M. Isard, J. Sivic and A.

Zisserman, “Object retrieval with large vocabularies

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 23
Organized by: City Engineering College, Bangalore, Karnataka - India

and fast spatial matching,” IEEE Conf. on CVPR, pp.

1–8, 2013.

[7] G. J. Sullivan, J. R. Ohm, “Recent developments in

standardization of high efficiency video coding

(HEVC),” SPIE Applications of Digital Image

Processing XXXIII, vol. 7798, 2010.

[8] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P.

Jouppi, and K. I. Farkas, “Single-isa heterogeneous

multi-core architectures for multithreaded workload

performance,” in ACM SIGARCH Computer

Architecture News, vol. 32, no. 2, 2014.

[9] M. Zaharia et al., “Improving mapreduce

performance in heterogeneous environments,” in

Proceedings of OSDI, 2008.

[10] W. Jiang and G. Agrawal, “Mate-cg: A map reduce-

like framework for accelerating data-intensive

computations on heterogeneous clusters,” in Parallel

Distributed Processing Symposium (IPDPS), 2012

IEEE 26th International, May 2012, pp. 644–655.

[11] Saleem Malik “ Proliferation, Deportment and

Revelation of cloak worms- a comparative study”.

Lambert academic publishers, ISBN- 978-3-659-

74991-9.

Author Profile

Nishmitha K.S is a UG student of CSE department at

KVG college of engineering, VTU, India. Her research

interests are Cloud Computing, Bigdata Analytics and

MapReduce & Hadoop processing. She is a student

member of Computer Society of India.

Meghana K, currently a B.E candidate of CSE department

at KVG college of engineering, VTU, India. Her research

interests are Cloud computing, MapReduce & Hadoop

processing and Priority Scheduling. She is a student

member of Computer Society of India.

Monica N is a student member of Computer Society of

India. Her research interests are Image Processing, Cloud

Computing and Big Data Analytics. She is currently

pursuing B.E in computer science at KVG college of

engineering, VTU, India.

Anima P, Currently working towards her bachelor degree

in computer science at KVG college of engineering,

VTU, India. She is a student member of Computer

Society of India. Her research interest includes Internet of

Things, Cloud Computing and Machine learning.

