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Abstract — The responsibility of contemporary multi-core processors is oftentimes bent on by a given power ration that 

requisite developer to evaluate different resolution trade-offs, e.g., to espouse between many slow, power-efficient cores, 

or fewer faster, power-hungry cores, or a amalgamation of them . Here, a prototype, a new Hadoop scheduler, called 

adjudicator, that utilizes aptness proffered by heterogeneous cores within a single multi-core processor for accomplishing  

a variety of performance objectives. Heterogeneous multi-core processors enable creating virtual resource pools based on 

“slow” and “fast” cores for multi-class priority scheduling. Since the same data can be accessed with either “slow” or 

“fast” apertures, spare resources (apertures) can be shared between different resource pools. Using sample experimental 

data and via simulation, a wrangle is made in approbation of heterogeneous multi-core processors as they achieve “faster”  

processing of small, interactive MapReduce jobs, while proffering improved throughput  for large, batch jobs.  Evaluation 

is done on performance benefits of adjudicator versus the FIFO and Capacity job schedulers that are broadly used in the 

Hadoop community. 
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I. INTRODUCTION 

To propound distinctive performance and computing 

proficiency, the dawning modern system on a chip (SoC) 

may include heterogeneous cores that execute the same 

instruction set while exhibiting different power and 

performance quirk . The SoC design is oftentimes driven 

by a power ration that limits the number (and type) of 

cores that can be put on a chip. The power constraints 

force developers to utilize a variation of choices within 

the same power envelope and to analyze decision 

tradeoffs as shown in  Figure 1.  

 

 
 

Fig.1 Different choices in the processor design 

 

 

A number of interesting choices may exist, but once the 

SoC design is chosen, it defines the configuration of the 

produced chip, where the number and the type of cores on 

the chip is fixed and cannot be changed. MapReduce and 

its open source implementation Hadoop proffer a scalable 

and fault-tolerant framework for processing large data 

sets. MapReduce jobs are automatically parallelized, 

distributed, and executed on a large cluster of commodity 

machines. When multiple users share the same Hadoop 

cluster, there are many interactive ad-hoc queries and 

small MapReduce jobs that are completion-time sensitive. 

In  addition, a growing number of MapReduce 

applications (e.g., personalized advertising, sentiment 

analysis, spam detection) are deadline-driven, hence they 

require completion time guarantees. To improve the 

execution time of small MapReduce jobs, one cannot use 

the “scale-out” approach, but could benefit using a “scale-

up” approach, where chores execute on “faster” 

resources. A typical perception of a MapReduce 

processing pipeline is that it is disk-bound (for small and 

medium Hadoop clusters) and that it can become 

network-bound on larger Hadoop clusters[1][2] 

       

Here, objective of paper is to design and evaluate 

Adjudicator, a new Hadoop scheduler that exploits 

capabilities proffered by heterogeneous cores for 

achieving a variety of performance objectives. These 

heterogeneous cores are used for creating different virtual 

resource pools, each based on a distinct core type. These 

virtual pools consist of resources of distinct virtual 

Hadoop clusters that operate over the same datasets and 

that can share their resources if needed. Resource pools 

can be exploited for multiclass job scheduling. Within the 

same power ration, Adjudicator operating on 

heterogeneous multi-core processors provides significant 

performance improvement for small, interactive jobs 

comparing to using homogeneous processors with (many) 

slow cores. Adjudicator can reduce the average 

completion time of time-sensitive interactive jobs by 

more than 40%. At the same time, Adjudicator maintains 

good performance for large batch jobs compared to using 

a homogeneous fast core design (with fewer cores). The 

considered heterogeneous configurations can reduce 

completion time of batch jobs up to 40%. 
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II.   MAPREDUCE PROCESSING 

In the MapReduce model [3] computation is expressed as 

two functions: map and reduce. MapReduce jobs are 

executed across multiple machines: the map stage is 

partitioned into map chores and the reduce stage is 

partitioned into reduce chores. The map and reduce 

chores are executed by map apertures and reduce 

apertures. In the map stage, each map chore reads a split 

of the input data, applies the user-defined map function, 

and generates the intermediate set of key/value pairs. 

        

The map chore then sorts and partitions these data for 

different reduce chores according to a partition function. 

In the reduce stage, each reduce chore fetches its partition 

of intermediate key/value pairs from all the map chores 

and sorts/merges the data with the same key.  After that, it 

applies the user-defined reduce function to the merged 

value list to produce the aggregate results . Then the 

reduce output is written back to a distributed file system.  

        

 
Fig. 2: HDFS architecture 

 

Job scheduling in Hadoop is performed by a master node 

called JobScrutineer, which manages a number of worker 

nodes. Each worker node is configured with a fixed 

number of map and reduce apertures, and these apertures 

are managed by the local ChoreScrutineer. The 

ChoreScrutineer periodically sends heartbeats to the 

master JobScrutineer via TCP handshakes. The heartbeats 

contain information such as current status and the 

available apertures. The JobScrutineer decides the next 

job to execute based on the reported information and 

according to a scheduling policy. Popular job schedulers 

include FIFO, Hadoop Fair scheduler (HFS) [4], and 

Capacity scheduler [5]. FIFO is the default and schedules 

MapReduce jobs according to their submission order. 

This policy is not efficient for small jobs if large jobs are 

also present. The Hadoop Fair Scheduler aims to solve 

this problem. It allocates on average the same amount of 

resources to every job over time so that small jobs do not 

suffer from delay penalties when scheduled after large 

jobs and large jobs do not starve. The Capacity scheduler 

proffers similar features as the HFS but has a different 

design philosophy. It allows users to define different 

queues for different types of jobs and to configure a 

percentage of share of the total resources for each queue 

in order to avoid FIFO’s shortcomings.  

The Hadoop implementation includes counters for 

recording timing information such as start and finish 

timestamps of the chores, or the number of bytes read and 

written by each chore. These counters are sent by the 

worker nodes to the master node periodically with each 

heartbeat and are written to logs. Counters help profile 

the job performance and provide important information 

for designing new schedulers. We utilize the extended set 

of counters from [6] in Adjudicator. 

 

III. RELATED WORK 

There is a body of work traversing power and 

performance trade-offs using heterogeneous multi-core 

processors. Some papers focus on the power savings 

aspect. [7], while others concentrate on the performance 

aspect,[8], [9] that examine techniques such as 

monitoring, evaluating thread performance, and 

dynamically mapping threads to different 

core types. [2] propose using architecture signatures to 

guide thread scheduling decisions.  

        

The proposed method needs to modify the applications 

for adding the architecture signatures, therefore it is not 

practical to deploy. These proposed techniques focus on 

improving the overall chip-level throughput. The work in 

[3] explores the per-program performance in addition to 

the overall chip level throughput when using 

heterogeneous multi-core processors. Here, project aims 

to support different performance objectives for classes of 

Hadoop jobs, which requires an exact control of running 

different types of apertures in different cores, therefore 

dynamical mapping of threads to cores is not suitable 

here. Performance analysis and optimization of 

MapReduce processing in the heterogeneous server 

environment is the subject of several. Load-balancing and 

load re-balancing approaches in a heterogeneous cluster is 

used in [2], [4] to allow the faster node to get more data, 

such that reduce chores finish approximately at the same 

time. [5] use data placement to optimize performance in 

heterogeneous environments. Faster nodes store more 

data and therefore run more chores without data 

transfer.[6] use off-line profiling of the jobs execution 

with respect to different heterogeneous nodes in the 

cluster and optimize the chore placement to improve the 

job completion time.[7] propose to divide the resources 

into two dynamically adjustable pools and use the new 

metric “progress share” to define the share of a job in a 

heterogeneous environment so that better performance 

and fairness can be achieved. This approach only 

allocates resources based on the job storage requirement. 

[8] modify the MapReduce scheduler to enable it to use 

special hardware like GPUs to accelerate the MapReduce 

jobs in the heterogeneous MapReduce cluster. [9] 

developed a MapReduce-like system in heterogeneous 

CPU and GPU clusters. All the above efforts focus on the 

server level heterogeneity in Hadoop cluster.  

       

In the case of Hadoop deployment on heterogeneous 

servers, one has to deal with data locality and balancing 
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the data placement according to the server capabilities. 

One of the biggest advantages of Hadoop deployed with 

heterogeneous processors is that both fast and slow 

apertures have a similar access to the underlying HDFS 

data that eliminates data locality issues. consider 

heterogeneous SoC design and demonstrates that the 

heterogeneity is well suited to improve performance of 

interactive workloads (e.g., web search, online gaming, 

and financial trading). This is another example of 

interesting applications benefiting from the heterogeneous 

multi-core processors. In [5], the basic idea of using 

heterogeneous multi-core processors for MapReduce 

processing is outlined and some initial evaluation results 

are presented. The current extended version of this paper 

provides a more detailed description of the scheduling 

Adjuducator framework and presents a comprehensive 

performance evaluation study. 

 

IV. ADJUDUCATOR FRAMEWORK 

A new Hadoop scheduling framework, called 

Adjuducator, for efficient job scheduling on the 

heterogeneous multi-core processors is proposed. First, it 

describes creating statically configured, dedicated virtual 

resource pools based on different types of available cores. 

Second, it explains how it  allows the shared use of spare 

resources among existing virtual resource pools. 

       

The number of fast and slow cores is SoC design specific 

and workload dependent. Project focus on a given 

heterogeneous multi-core processor in each server node, 

and the problem of taking advantage of these 

heterogeneous capabilities, especially compared to using 

homogenous multi-core processors with the same power 

ration. Here,  goal is twofold: 1) design a framework for 

creating virtual Hadoop clusters with different processing 

capabilities (i.e., clusters with fast and slow apertures); 

and 2) proffer a new scheduler to support jobs with 

different performance objectives for utilizing the created 

virtual clusters and sharing their spare resources. The 

problem definition is as follows: 

 

Input: 

C: cluster size (number of machines) 

Nf : number of fast cores on each machine 

Ns: number of slow cores on each machine 

S: job size distribution 

A: job arrival process 

 
Output:Sched: schedule of Map/Reduce chore placement 

 

Objective:Minimize{Sched} Job Completion Time (Sched ).  

       

A natural first question is why a new Hadoop scheduler is 

a necessity and why the default Hadoop scheduler can not 

work well. To answer this question, we show the 

performance comparison under the same power ration of 

using the default Hadoop scheduler on heterogenous and 

homogenous multi-core processors respectively, and also 

Adjuducator scheduler with the same heterogenous multi-

core processors, see Figure 3. The important message 

from Figure 3 is that the default Hadoop scheduler cannot 

use well the heterogenous multi-core processors and may 

even perform worse than when using it on a cluster with 

homogenous multicore processors with the same power 

ration due to the random use of fast and slow cores 

 

(i) Dedicated Virtual Resource Pools for Different 

Job Queues 
Adjudicator proffers the ability to schedule jobs based on 

performance objectives and resource preferences. For 

example, a user can submit small, time-sensitive jobs to 

the Interactive Job Queue to be executed by fast cores and 

large, throughput-oriented jobs to the Batch Job Queue 

for processing by (many) slow cores. This scenario is 

shown in Figure 3.  

 

Fig. 3. Virtual Resource Pools 

       It is also possible for the scheduler to automatically 

recognize the job type and schedule the job on the proper 

queue. For example, small and large jobs can be 

categorized based on the number of chores. For example, 

as shown in Figure 4, fast apertures can be grouped as a 

Virtual Fast (vFast) resource pool that is dedicated to the 

Interactive Job Queue. Slow apertures can be grouped as 

a Virtual Slow (vSlow) resource pool that is dedicated to 

the Batch Job Queue. 

       

To support a virtual resource pool design, the 

ChoreScrutineer needs additional mechanisms for the 

following functionalities: 

a. The ability to start a chore on a specific core, i.e., to 

run a aperture on a specific core and assign a chore to it; 

b.To maintain the mapping information between a chore 

and the assigned aperture type. 

       

When a chore finishes, the Chore- Scrutineer knows 

whether the released aperture is fast or slow. The 

JobScrutineer needs to know whether the available 

aperture is a slow or fast aperture to make resource 

allocation decisions. Adjudicator communicates this 

information through the heartbeat, which is essentially a 

RPC (Remote Procedure Call) between the 
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ChoreScrutineer at a worker node and the JobScrutineer 

at the master node. The ChoreScrutineer asks the 

JobScrutineer for a new chore when the current running 

map/reduce chores are below the configured maximum 

allowed number of map/reduce chores. If the 

ChoreScrutineer can accept a new chore, then the 

JobScrutineer calls the Hadoop Scheduler for a decision 

to assign a chore to this ChoreScrutineer. The Scheduler 

checks ChoreScrutineerStatus to know whether the 

available apertures are Map or Reduce apertures[11]. 

Adjudicator’s Scheduler also needs to distinguish the 

aperture type. There are four types of apertures: i) fast 

map, ii) slow map, iii) fast reduce, and iv) slow reduce. In 

the Adjudicator framework, the Scheduler interacts with 

the JobQueue by considering the aperture type, e.g., if the 

available aperture is a fast aperture, then this aperture 

belongs to vFast pool, and the InteractiveJobQueue is 

selected for a job/chore allocation. After selecting the 

JobQueue, it allocates the available aperture to the first 

job in the queue. Different policies exist for ordering the 

jobs inside the JobQueue as well as different aperture 

allocation policies. The default policy is FIFO.  

 

(ii) Managing Spare Cluster Resources 

 
Static resource partitioning and allocation may be 

inefficient if a resource pool has spare resources 

(apertures) but the corresponding JobQueue is empty, 

while other JobQueue(s) have jobs that are waiting for 

resources..  

 

 
 

Fig. 4. Virtual Shared Resource Pool 

 

For example, if there are jobs in the InteractiveJobQueue 

and they do not have enough fast apertures, then these 

jobs should be able to use the available (spare) slow 

apertures. We use the Virtual Shared (vShare) Resource 

pool to utilize spare resources. As shown in Figure 4, the 

spare apertures are put into the vShare pool. Apertures in 

the vShare resource pool can be used by any job queue.. 

These chores are migrated to the newly released fast 

apertures so that the jobs from the InteractiveJobQueue 

always use optimal resources[11]. Similarly, the 

migration mechanism allows the batch job to use 

temporarily spare fast apertures if the 

InteractiveJobQueue is empty. These resources are 

returned by migrating the batch job from the fast 

apertures to the released slow apertures when a new 

interactive job arrives. Adjudicator allows to specify 

different policies for handling spare resources.  

Adjudicator can support SLOs by adding priorities to the 

queues and by allowing different policies for ordering the 

jobs inside each queue. When there are not enough fast 

apertures for interactive jobs, these jobs can be given 

priority for using the available slow apertures. This can 

be supported by the vShared resource pool and chore 

migration 

V. EXPERIMENTAL SETUP  

As the heterogeneous multi-core processors are not yet 

readily available, we perform a simulation study using the 

extended MapReduce simulator SimMR [10] and a 

synthetic Facebook workload [4]. In addition, simulation 

allows more comprehensive sensitivity analysis. Our goal 

is to compare the job completion times and to perform a 

sensitivity analysis when a workload is executed by 

different Hadoop clusters deployed on either 

homogeneous or heterogeneous multi-core processors. 

The event-driven simulator SimMR consists of the 

following three components, see Figure 10: A Trace 

Generator creates a replayable MapReduce workload. In 

addition, the Trace Generator can create traces defined by 

a synthetic workload description that compactly 

characterizes the duration of map and reduce chores as 

well as the shuffle stage characteristics via corresponding 

distribution functions. This feature is useful to conduct 

sensitivity analysis of new schedulers and resource 

allocation policies applied to different workload types. 

The Simulator Engine is a discrete event simulator that 

accurately emulates the job master functionality in the 

Hadoop cluster. A pluggable scheduling policy dictates 

the scheduler decisions on job ordering and the amount of 

resources allocated to different jobs over time. Paper 

extends SimMR3 to emulate the Adjudicator framework. 

Paper  extends SimMR to emulate the Capacity scheduler 

[10] for homogeneous environments.  

     

The three schedulers used in this paper below: FIFO: the 

default Hadoop scheduler that schedules the jobs based 

on their arrival order. Capacity: users can define different 

queues for different types of jobs. Each queue can be 

configured with a percentage of the total number of 

apertures in the cluster, this parameter is called queue 

capacity. This scheduler has an Elasticity feature that 

allows free resources to be allocated to a queue above its 

capacity to prevent artificial silos of resources and 

achieve better resources utilization. Adjudicator:  uses 

two different versions: i) the basic version without chore 

migration and ii) the advanced version with the migration 

feature enabled. In experiments, paper simulates the 

execution of the Facebook workload on three different 

Hadoop clusters with multi-core processors. For 
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sensitivity analysis, paper present results for different 

cluster sizes of 75, 120, and 210 nodes as they represent 

interesting performance situations. Paper  configures  

each Hadoop cluster with 1 map and 1 reduce aperture 

per core4, e.g., for a Hadoop cluster size with 120 nodes, 

the three considered configurations have the following 

number of map and reduce apertures: the. Paper generates 

500 MapReduce jobs, with a 3-fold increase in the input 

datasets 5. Jobs from the 1st to the 5th group are small 

interactive jobs (e.g., with less than 300 chores) and the 

remaining jobs are large batch jobs. The interactive jobs 

are 82% of the total mix and the batch jobs are 18%.  

 

 

 
 

 

Fig. 5: Experimental setup 

 

First, paper performs a comparison of these three 

configurations when jobs are processed by each cluster in 

isolation: each job is submitted in the FIFO order, there is 

no bias due to the specific ordering policy nor queuing 

waiting time for each job, e.g., each job can use all cluster 

resources. For the heterogeneous configuration, the 

SimMR implementation supports the vShared resource 

pool so that a job can use both fast and slow resources. 

For interactive jobs, Homogeneous-fast and 

Heterogeneous configurations achieve very close 

completion times and significantly outperform the 

Homogeneous-slow configuration by being almost twice 

faster.  Shown in figure 5. The small, interactive jobs 

have a limited parallelism and once their chores are 

allocated the necessary resources, these jobs cannot take 

advantage of the extra apertures available in the system. 

For such jobs, fast apertures are the effective way to 

achieve better performance (scale-up approach). For 

batch jobs, as expected, the scale-out approach shows its 

advantage since batch jobs have a large number of map 

chores.  

        

Homogeneous-slow configuration for batch jobs.It is 

apparent that the heterogeneous multi-core processors 

with fast and slow cores present an interesting design 

point. It can significantly improve the completion time of 

interactive jobs with the same power ration. The large 

batch jobs are benefiting from the larger number of the 

slower cores that improve throughput of these jobs. 

Moreover, the batch jobs are capable of taking advantage 

and effectively utilizing the additional fast apertures in 

the vShared resource pool supported by Adjudicator 

 

V. CONCLUSION 

Here new opportunities and performance benefits of using 

servers with heterogeneous multi-core processors for 

MapReduce processing are explored. A new scheduling 

framework, called Adjudicator, which is implemented on 

top of HadooFp is presented. Adjudicator enables 

creating different virtual resource pools based on the 

core-types for multi-class job scheduling. This new 

framework aims at taking advantage of capabilities of 

heterogeneous cores for achieving a variety of 

performance objectives. Adjudicator is easy to use 

because the created virtual clusters have access to the 

same data stored in the underlying distributed file system, 

and therefore, any job and any dataset can be processed 

by either fast or slow virtual resource pools, or their 

combination.  

     

It is easy to incorporate the Adjudicator scheduler into the 

latest Hadoop implementation with YARN [3], as YARN 

has a pluggable job scheduler as one of its components. In 

the future, once the servers with heterogeneous multi-core 

processors become available, we plan to conduct more 

test bed experiments using Adjudicator and a variety of 

job ordering scheduling policies for achieving fairness 

guarantees or job completion objectives. Also, using 

models from earlier work [3], we plan to quantify the 

impact of node and Apertures failures on the job 

completion time as the impact of failed fast or slow 

Aperturess may be different.  
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