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Abstract:-During the last few decades, there has been a rush in research in the area of deep learning. In this paper we have 

made a review on the limitations of deep learning in physical robotic systems, using currently available examples. It is mainly 

focused on the recent advances made in robotics community and application of deep learning in robotics.  
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I. INTRODUCTION 

 

Deep learning is the discipline of science involving training 

large artificial neural networks. Deep neural networks 

(DNNs) can have hundreds of millions of parameters [1, 2], 

allowing them to model complex functions such as nonlinear 

dynamics. They form compact representations of state from 

raw, high-dimensional, multimodal sensor data commonly 

found in robotic systems [3], and unlike many machine 

learning methods, they do not require a human expert to 

hand-engineer feature vectors from sensor data at design 

time. 

 

DNNs can, however, present particular challenges in 

physical robotic systems, where generating training data is 

generally expensive, and sub-optimal performance in 

training poses a danger in some applications. However, 

despite such challenges, robotics is  finding it difficult to 

create alternatives, such as leveraging training data via 

digital manipulation, automating training, and employing 

multiple DNNs to improve performance and reduce training 

time. 

 

In this paper an introduction to deep learning is followed by 

a discussion on the limitations of deep learning and 

strategies that mitigate these as well as future trends are 

discussed. 

 

II. DEEP LEARNING 

 

1 A brief history of deep learning 

A fundamental principles of linear regression were used by 

Gauss and Legendre in 1981 [4], and many of those same 

principles still cover what researchers in deep learning 

study. However, several advances have slowly transformed 

regression into what we now call deep learning. First, the 

addition of an activation function enabled regression 

methods to fit to nonlinear functions. It also introduced 

some biological similarity with brain cells [5]. 

Next, the nonlinear models were stacked in “layers” to 

create powerful models, called multi-layer perceptrons. In 

the year 1960 a few researchers independently figured out 

how to differentiate multi-layer perceptrons [6], and by the 

1980s, it evolved into a popular method for training them, 

called back propagation [7, 8]. It was soon proven that 

multi-layer perceptrons were universal function 

approximators [9], meaning they could fit to any data, no 

matter how complex, with arbitrary precision, using a finite 

number of regression units. In many ways, backpropagation 

marked the beginning of the deep learning revolution; 

however, researchers still mostly limited their neural 

networks to a few layers because of the problem of 

vanishing gradients [10, 11]. Deeper neural networks took 

exponentially longer to train. 

 

Neural networks were successfully applied for robotics 

control in early 1980s [12]. It was quickly recognized that 

nonlinear regression provided the functionality that was 

needed for operating dynamical systems in continuous 

spaces [13, 14], and closely related fuzzy systems seemed 

well suited for nominal logical control decisions [15]. Even 

as early as 1989, Pomerleau’s [16] famously demonstrated 

that neural networks were effective for helping vehicles to 

stay in their lanes. However, neural networks were still 

generally too slow to digest entire images, or perform the 

complex tasks necessary for many robotics applications.  

 

In the year 2000, researchers began using graphical 

processing units (GPUs) to parallelize implementations of 

artificial neural networks [17]. The largest bottleneck in 

training neural networks is a matrix-vector multiplication 

step, which can be parallelized using GPUs. In 2006, Hinton 

presented a training method that he demonstrated to be 

effective with a many-layered neural network [18]. The near 

simultaneous emergence of these technologies triggered the 

flurry of research interest that is now propelling deep 

learning forward at an unprecedented rate [19]. 
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As hardware improved, and as neural networks began to 

become more practical, they were increasingly found to be 

effective with real robotics applications. In 2004 RNNPB 

showed that neural networks could self-organize high-level 

control schema that generalized effectively with several 

robotics test problems [20]. In 2008, neuroscientists made 

advances in recognizing how animals achieved locomotion, 

and were able to extend this knowledge all the way to neural 

networks for experimental control of robots [21]. In 2011, 

TNLDR demonstrated that deep neural nets could 

effectively model both state and dynamics from strictly 

unsupervised training with raw images of a simulated robot 

[22]. Another relevant work is Pomerleau in 2012 in his 

book Surveying applications, for neural networks in 

perception for robot guidance [23]. 

 

In foresight, we see that chess was considered in the early 

years of artificial intelligence to be representative of human 

intelligence over machines [24]. After machines beat world-

class chess players [25], a new emblematic task was needed 

to represent the superior capabilities of human intelligence. 

Visual recognition was largely accepted to be something 

easy for humans but difficult for machines [26]. But now, 

with the emergence of deep learning, humans will not be 

able to claim that as an advantage for much longer. Deep 

learning has surged ahead of well-established image 

recognition techniques [27] and has begun to dominate the 

benchmarks in handwriting recognition [28], video 

recognition [29], small-image identification [30], detection 

in biomedical imaging [31-33], and many others. It has even 

achieved super-human accuracy in several image 

recognition contests [27, 34, 35]. Perhaps agility or dexterity 

will be a forthcoming achievement where machines will 

begin to demonstrate human like proficiency. If so, it 

appears that deep neural networks may be the learning 

model that enables it. 

 

2. Common DNN structures 

The main idea of using machine learning in controlling 

robots requires humans to be willing to relinquish a degree 

of control. This can seem counterintuitive at first, but the 

benefit for doing so is that the system can then begin to learn 

on its own. This makes the system capable of adapting, and 

therefore has potential to ultimately make better use of the 

direction that comes from humans. 

 

DNNs are well suited for use with robots because they are 

flexible, and can be used in structures that other machine 

learning models cannot support. Figure 1 diagrams four 

common structures for using DNNs with robots. 

 

Structure A described in Figure 1 shows a DNN for 

regressing arbitrary functions. It is typically trained by 

presenting a large collection of example training pairs:{ 

<x1, y1>,<x2, y2>, … , <xn,yn> }. An optimization method 

is applied to minimize the prediction loss. For regression 

problems, loss is typically measured with sum-squared error, 

and for classification problems it is often measured with 

crossentropy particularly when a softmax layer is used for 

the output layer of the neural network [36].  Traditionally, 

the most popular optimization method for neural networks is 

stochastic gradient descent [37], but improved methods such 

as RMSProp [38] and Adam [39] have recently garnered 

widespread usage. Some other considerations for training 

them effectively, once the training is finished, novel vectors 

may be fed in as x to compute corresponding predictions for 

y.  

 

Structure B is called an auto encoder [40]. It is one common 

model for facilitating “unsupervised learning.” It requires 

two DNNs, called an “encoder” and a “decoder.”  In this 

configuration, only x needs to be supplied by the user. s is a 

“latent” or internal encoding that the DNN generates. For 

example, x might represent images observed by a robot’s 

camera, containing thousands or even millions of values. 

The encoder might use convolutional layers, which are 

known to be effective for digesting images [35, 41, 42]. s 

might be a small vector, perhaps only tens of values. By 

learning to reduce x to s, the auto encoder essentially creates 

its own internal encoding of “state.” It will not necessarily 

use an encoding that has meaning for humans, but it will be 

sufficient for the DNN to approximately reconstruct x.  

 

Structure C is a type of “recurrent neural network,” which is 

designed to model dynamic systems, including robots. It is 

often trained with an approach called “backpropagation 

through time” [43, 44]. Many advances, such as “long short-

term memory units,” have made recurrent neural networks 

much stronger [27, 45]. In this configuration, u represents a 

control signal. u may also contain recent observations. s is 

an internal representation of future state, and x is a vector of 

anticipated future observations. The transition function 

approximates how the control signal will affect state over 

time. Just as with auto encoders, the representation of state 

can be entirely latent, or partially imposed by the user. (If it 

were entirely imposed, the model would be prevented from 

learning.) If x includes an estimate of the utility of state s, 

then this configuration is used in “model-based 

reinforcement learning” [46]. 

 

Structure D learns a control policy. It can facilitate “model-

free” reinforcement learning. It uses a DNN to evaluate the 

utility or quality, q, of potential control vectors. s is a 

representation of state, and u is a control vector. 

Configurations like this are used when an objective task is 

known for the robot to perform, but the user does not know 

exactly how to achieve it. By rewarding the robot for 

accomplishing the task, it can be trained to learn how to 

prioritize its own choices for actions.  

 

For example, reinforcement learning was used to teach a 

machine to play a wide range of Atari video games [47]. 
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Figure 1.  Diagram of some common structures for using 

neural networks with robots. 

 

A: Function approximating models are trained to 

approximate the mappings represented in a training set of 

pair-wise examples. B: Auto encoders can reduce complex 

or high dimensional observations to a simple feature 

representation, often extracting intrinsic information from 

images. C: Recurrent models specialize in dynamics and 

temporal predictions. D: Policy models trained with 

reinforcement learning seek to plan the best decisions to 

make under possible future conditions. 

 

III. DEEP LEARNING IN ROBOTICS 

 

The robotics community has identified numerous goal for 

robotics in the next 5 to 20 years. These include, but 

certainly are not limited to, human-like walking and 

running, teaching by demonstration, mobile navigation in 

pedestrian environments, collaborative automation, 

automated bin/shelf picking, automated combat recovery, 

and automated aircraft inspection and maintenance, and 

robotic disaster mitigation and recovery [48- 52].  

 

In this paper we have identified five general challenges for 

robotics that are critical for reaching these goals and for 

which DNN technology has high potential for impact:  

 

Challenge 1: Learning complex, high-dimensional, and 

novel dynamics. Analytic derivation of complex dynamics 

requires human experts, is time consuming, and poses a 

trade-off between state dimensionality and tractability. 

Making such models robust to uncertainty is difficult, and 

full state information is often unknown. Systems that can 

quickly and autonomously adapt to novel dynamics are 

needed to solve problems such as grasping new objects, 

traveling over surfaces with unknown or uncertain 

properties, managing interactions between a new tool and/or 

environment, or adapting to degradation and/or failure of 

robot subsystems. Also needed are methods to accomplish 

this for systems that possess hundreds (or even thousands) 

of degrees of freedom, exhibit high levels of uncertainty, 

and for which only partial state information is available. 

 

Challenge 2: Learning control policies in dynamic 

environments. As with dynamics, control systems that 

accommodate high degrees of freedom for applications such 

as multi-arm mobile manipulators, anthropomorphic hands, 

and swarm robotics are needed. Such systems will be called 

upon to function reliably and safely in environments with 

high uncertainty and limited state information. 

 

Challenge 3: Advanced object recognition. DNNs have 

already proven to be highly adept at recognizing and 

classifying objects [27,34,35]. Advanced application 

examples include recognizing deformable objects and 

estimating their state and pose for grasping, semantic task 

and path specification (e.g., go around the table, to the car, 

and open the trunk), and recognizing the properties of 

objects and surfaces such as sharp objects that could pose a 

danger to human collaborators or wet/slippery floors. 

 

Challenge 4: Interpreting and anticipating human actions. 

This challenge is critical if robots are to work with or 

amongst people in applications such as collaborative 

robotics for manufacturing, eldercare, autonomous vehicles 

operating on public thoroughfares, or navigating pedestrian 

environments. It will enable teaching by demonstration, 

which will in turn facilitate task specification by individuals 

without expertise in robotics or programming. This 

challenge may also be extended to perceiving human needs 

and anticipating when robotic intervention is appropriate. 

 

Challenge 5: High-level task planning. Robots will need to 

reliably execute high-level commands that fuse the previous 

six challenges to achieve a new level of utility, especially if 

they are to benefit the general public. For example, the 

command “get the milk” must autonomously generate the 

lower-level tasks of navigating to/from the refrigerator, 

opening/closing the door, identifying the proper container 

(milk containers may take many forms), and securely 

grasping the container. 

 

Loosely speaking, these challenges form a sort of “basis set” 

for the goals mentioned above. For example, human-like 

walking and running will rely heavily on Challenges 1 

(learning dynamics) and 2 (learning control policies), while 

teaching by demonstration will require advances in 

Challenges 3 (object recognition) and 4 (interpreting human 

actions). 

 

Table.1 categorizes recent robotics research that utilizes 

DNN technology according to these challenges, as well as 

the DNN structures discussed in the previous section. From 

this several observations are made: First is that Structure A 

is clearly the most popular DNN architecture in the recent 

robotics literature. This is likely explained by its intuitive 

nature, essentially learning to approximate the same function 

presented to it in the form of training samples. It also 

requires the least amount of domain knowledge in DNNs to 

implement. Robotics challenges, however, are not limited to 
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the sort of classification and/or regression problems to 

which this structure is best suited. 

 

Additional focus on applying Structures B, C, and D to 

robotics problems may very well catalyze significant 

advancement in many of the identified challenges. One of 

the purposes of this paper is to emphasize the potential of 

the other structures to the robotics community. 

 
Somewhat related is the fact that some cells in Table 1 are 

empty. In the authors’ opinion, this is due to a lack of 

research focus rather than any inherent incompatibilities 

between challenges and structures. In particular, the ability 

of Structure B to learn compact representations of state 

would be particularly useful for estimating the pose, state, 

and properties of objects (Challenge 4) and the state of 

human collaborators (Challenge 5). 

 
Table 1. An overview of how DNN structures are used in 

the recent literature to address the five challenges 
 DNN Structure 

Challenge A B C D 

1 

Dynamics 

[76,78,81,85,115,12

7] 

[87,112,113,11

5] 

[115,122

] 

[125,126

] 

 2 

(Control) 

[85,115] [112] [122] [125,128

] 

 3 

(Manipulation
) 

[79,82-85,123] [112] [123] [128] 

 4 

(Human 
Actions) 

[77,79,123,127]  [123]  

 5 
(High-level 

planning) 

   [128] 

 

Table 1 also indicates limited application of DNNs to high-

level task planning (Challenge 7). One of the barriers to the 

application of DNNs is quantifying the quality of such 

decisions. Standard benchmarks for decision quality are 

needed. Once this is addressed, DNNs may very well be able 

to be the tool that allows robotics to make progress on this 

very significant challenge. 

 
The balance of this section is categorized by DNN structure 

and is organized as follows: 1) A discussion of the 

structure’s role in robotics.  

2) Examples from the recent literature of how the structure 

is being applied in robotics. 

3) Practical recommendations for applying the structure in 

robotics. 

 

IV. CLASSIFIERS AND DISCRIMINATIVE MODELS 

(STRUCTURE IN ROBOTICS 

 

1 THE ROLE OF STRUCTURE A IN ROBOTICS 

Structure A involves using a deep learning model to 

approximate a function from sample input-output pairs. This 

may be the most general-purpose deep learning structure, 

since there are many different functions in robotics that 

researchers and practitioners may want to approximate from 

sample observations. Some examples include mapping from 

actions to corresponding changes in state, mapping from 

changes in state to the actions that would cause it, or 

mapping from forces to motions. Whereas in some cases 

physical equations for these functions may already be 

known, there are many other cases where the environment is 

just too complex for these equations to yield acceptable 

accuracy. In such situations, learning to approximate the 

function from sample observations may yield significantly 

better accuracy. 

 

The functions that are approximated need not be continuous. 

Function approximating models also excel at classification 

tasks, such as determining what type of object lies before the 

robot, which grasping approach or general planning strategy 

is best suited for current conditions, or what is the state of a 

certain complex object with which the robot is interacting. 

 

The next section reviews some of the many applications for 

classifiers, regression models, and discriminative models 

that have appeared in the recent literature with robotics. 

 

2 GENERATIVE AND UNSUPERVISED MODELS (STRUCTURE B) 

IN ROBOTICS 

2.1 THE ROLE OF STRUCTURE B IN ROBOTICS 

One of the characteristic capabilities that make humans so 

proficient at operating in the real world is their ability to 

understand what they perceive. A similar capability is 

offered in auto encoders, a type of deep learning model that 

both encodes observations into an internal representation, 

then decodes it back to the original observation. These 

models digest high-dimensional data and produce compact, 

low-dimensional internal representations that succinctly 

describe the meaning in the original observations [3]. 

 

Thus, auto-encoders are used primarily in cases where high-

dimensional observations are available, but the user wants a 

low-dimensional representation of state.  Generative models 

are closely related. They utilize only the decoding portion of 

an auto encoder, and are useful for predicting observations. 

Inference methods may be used with generative models to 

estimate internal representations of state without requiring 

an encoder to be trained at all. In many ways, generative 

models may be considered to be the opposite of classifiers, 

or discriminative models, because they map from a succinct 

representation to a full high-dimensional set of values 

similar to those that might typically be observed. 
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V. POLICY LEARNING MODELS (STRUCTURE D) IN 

ROBOTICS 

 

1 THE ROLE OF STRUCTURE D IN ROBOTICS 

Learning a near optimal (or at least a reasonably acceptable) 

control policy is often the primary objective in combining 

machine learning with robotics. The canonical model for 

using deep neural networks for learning a control policy is 

deep Q-learning [47]. It uses a DNN to model a table of Q-

values, which are trained to converge to a representation of 

the values for performing each possible action in any state. 

Although Structure D is quite similar to Structure A in terms 

of the model itself, they are trained in significantly different 

ways. Instead of minimizing prediction error against a 

training set of samples, deep Q-networks seek to maximize 

long-term reward. This is done through seeking a balance 

between exploration and exploitation that ultimately leads to 

an effective policy model. 

 

Ultimately, reinforcement learning models are useful for 

learning to operate dynamic systems from partial state 

information, and controllers based on deep reinforcement 

learning can be very computationally efficient at runtime 

[64]. They automatically infer priorities based on rewards 

that are obtained during training. In theory, they provide a 

complete control policy learning system, but they do suffer 

from extremely slow training times. Consequently, many of 

the works in the next section combine them with other 

approaches in order to seek greater levels of control 

accuracy and training speed. 

 

VI. CURRENT SHORTCOMINGS OF DNNS FOR ROBOTICS 

 

For all of its benefits, deep learning does pose some 

drawbacks. Perhaps most significant is the volume of 

training data required, which is particularly problematic in 

robotics because generating training data on physical 

systems can be expensive and time consuming. For instance, 

Levine et al. [57] used 14 robots to collect over 800,000 

grasp attempts over a period of 2 months. Jain et al. [62] had 

trained their traffic maneuver prediction system on 1180 

miles of high- and low-speed driving with 10 different 

drivers. Punjani and Abbeel [53] required repeated 

demonstrations of helicopter aerobatic maneuvers by a 

human expert. Neverova et al. [54] had access to over 

13,000 videos of conversations, and Ouyang and Wang [58] 

had access to 60,000 samples for pedestrian detection. Pinto 

and Gupta [65] needed 700 hours of robot time to generate a 

data set of 50,000 grasps for the training of a convolutional 

neural network. Despite this, the literature does contain 

clever approaches to mitigating this disadvantage. One 

approach entails using simulation to generate virtual training 

data.  

 

For example, Mariolis et al. [55] pre-trained their garment 

pose recognition networks on a large synthetic data set 

created in simulation using 3D graphics software. Kappler et 

al. [66] generated a database of over 300,000 grasps on over 

700 objects in simulation, generating physics-based grasp 

quality metrics for each and using this to classify grasp 

stability automatically. They validated via human 

classification of grasps and concluded that the computer- 

and human-generated labeling had good correlation. 

Another strategy is leveraging training data through digital 

manipulation. 

Neverova et al. [54] faced the challenge that speed of 

conversational gestures varies significantly among different 

people. They varied video playback speed to simulate this 

temporal variance, expanding their training set without the 

need to acquire additional samples. Still other researchers 

utilizing reinforcement learning, such as Polydoros et al. 

[61] and Zhang et al. [64], automated training using 

alternative control systems during the learning phase. 

 

Training time is another challenge associated with the sheer 

size of DNNs. Typical models involve up to millions of 

parameters and can take days to train on parallel hardware, 

which is practical only for frequently repeated tasks that 

provide adequate payback on training time invested. One 

way to reduce training time is distributing a task among 

multiple, smaller DNNs. Mariolis et al. [55] trained two 

DNNs: One performed object classification, and its result 

was passed to a second network for pose recognition. This 

multi-step approach sped both training and classification at 

runtime. Lenz et al. [63] employed a two-stage network 

design for grasp detection. The first DNN had relatively few 

parameters. Sacrificing accuracy for speed, it eliminated 

highly unlikely grasps. The second stage had more 

parameters, making it more accurate, but was relatively 

quick since it did not need to consider unlikely grasps. They 

found the combination to be robust and computationally 

efficient.  It should be noted, however, that this strategy 

represents a tradeoff with other researchers’ suggestions that 

integrating multiple functions within a single network 

results in better performance [58]. 

 

The work of Zhang et al. [64] highlights two additional 

challenges. First, unsupervised learning is not practical for 

robotic systems where a single failure is catastrophic, as in 

aerial vehicles. Second, providing the necessary 

computational resources for deep learning in a system that is 

sensitive to weight, power consumption, and cost is often 

not practical. The authors trained their aerial systems using a 

ground- based control system communicating wirelessly 

with the vehicle. This made training safe and automatic, and 

allowed them to use off-board computing resources for 

training. 

 

VII. CONCLUSION 

 

Deep learning has shown promise in significant sensing, 

cognition, and action problems, and even the potential to 
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combine these normally separate functions into a single 

system. DNNs can operate on raw sensor data and deduce 

key features in that data without human assistance, 

potentially greatly reducing up-front engineering time. They 

are also adept at fusing high-dimensional, multimodal data. 

Improvement with experience has been demonstrated, 

facilitating adaptation in the dynamic, unstructured 

environments in which robots operate. 

 

Some remaining barriers to the adoption of deep learning in 

robotics include the necessity for large training data and 

long training times. Generating training data on physical 

systems can be relatively time consuming and expensive. 

One promising trend is crowdsourcing training data via 

cloud robotics [67]. It is not even necessary that this data be 

from other robots, as shown by Yang’s use of general-

purpose cooking videos for object and grasp recognition 

[56]. Regarding training time, local parallel processing [17] 

and increases in raw processing speed have led to significant 

improvements. Distributed computing offers the potential to 

direct more computing resources to a given problem [60] but 

can be limited by communication speeds [2]. 

 

There may also be algorithmic ways of making the training 

process more efficient yet to be discovered. For example, 

deep learning researchers are actively working on directing 

the network’s attention to the most relevant subspaces 

within the data and applying biologically inspired, sparse 

DNNs with fewer synaptic connections to train [27]. 

 

Ultimately, the trends are moving toward greater levels of 

cognition, and some researchers even believe that deep 

learning may achieve human-level abilities in the near future 

[1, 67]. However, deep learning still has many obstacles to 

overcome before achieving such an ambitious objective. 

Currently, cognitive training datasets do not even exist [67]. 

Although DNNs excel at 2D image recognition, they are 

known to be highly susceptible to adversarial samples [68], 

and they still struggle to model 3D spatial layouts with 

object invariance [65]. Currently, DNNs appear to be 

powerful tools for practitioners in robotics, but only time 

will tell whether they can really deliver the capabilities that 

are needed for dexterous adaptation in general 

environments. 
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