
International Conference on Computer Science and Technology Allies in Research-March 2016, || 40

Organized by: City Engineering College, Bangalore, Karnataka - India

 International Journal of Computer Sciences International Journal of Computer Sciences International Journal of Computer Sciences International Journal of Computer Sciences &&&& Engineering Engineering Engineering Engineering Open Access
 Review Paper Volume-4, Special Issue-3, May 2016 E-ISSN: 2347-2693

Agile Software Development

Mr. Manjunath R
1
 and Nagashree R A

2

1,2
Dept. of Computer Science & Engineering, City Engineering College

Bangalore, India

Available online at: www.ijcseonline.org

Abstract— Successful software is one which provides quality product in given cost and time. Delivering quality software

in definite time is a difficult task. Traditional software processes are heavy weight, giving importance to documentation

and are rigid making them difficult to apply to different software projects. Agile has become one of the big buzzwords in

the software development industry. To put it simply, Agile development or lightweight methods are less documentation

oriented and more code oriented stating that source code is the most important document. Agile is a different way of

executing software development teams and projects. Agile approaches help the teams respond to unpredictability through

incremental, iterative work cadences or otherwise known as “sprints”. Agile methodologies are an alternative to waterfall,

or traditional sequential development. This software can be used in development stage, open collaboration and process

adaptability in the process of project development. With a minimal work in different stages can improve planning of the

project. . This paper discusses a few agile processes, the philosophy driving them and challenges faced while

implementing them and mainly focuses on seeking alternative approach to traditional project management.

Keywords- Agile movement, software methodology, iterative tasks, light-weight methods

I. INTRODUCTION

In earlier days software development activity followed

“code and fix” approach. This approach worked well for

small systems but failed when systems grew larger and

when there was need to add new features. To avoid this

Engineering methodology came into picture. The aim of

these methodologies was to make the software process

more predictable and efficient by having a strong emphasis

on planning activity. This approach works well for other

engineering fields, like lot of planning is needed to build a

bridge or a house. But the software market is ever

changing and brings in greater choices into market. Users

and managers must deal with issues like what to include

and what to exclude in the software, which technologies to

use, what will give the company a competitive edge?.

These questions difficult to answer and trying to predict

them in a rapidly changing market is even more difficult.

As a reaction to these methodologies, lightweight

methodologies like agile methodologies appeared on the

scene. Agile methodologies attempt to compromise

between no process and too much process. According to

[2] there are two more differences

• Agile methods are adaptive rather than predictive.

Engineering methods try to plan out in great detail for long

span of time, this approach works well till there are no

changes in design. Agile methods welcome change and try

to adapt and thrive on change.

• Agile methods are people oriented rather than process

oriented.

Engineering methods define processes so that they work no

matter the skill of the workers. It says that individuals are

not as important as their roles. This approach is correct for

a factory where workers are not the most intelligent and

creative people. Agile methods state that no process will

ever make up for the skill and intelligence of the

development team. So role of process is to support

development team in their work.

Agile development is based on iterative incremental

development, in which requirements and solutions

evolve through team collaboration. It recommends a

time-boxed iterative approach, and encourages rapid

and flexible response to change. It is a theoretical

framework and does not specify any particular practice

that a development team should follow. ‘Scrum’ is a

specific agile process framework that defines the

practices requires to be followed. Early implementations

of agile methods include Rational Unified Process (1994),

Scrum (1995), Crystal Clear ,Extreme Programming

(1996) , Adaptive Software Development , Feature Driven

Development (1997) , and Dynamic Systems Development

Method (DSDM) (1995). All these are collectively

referred to as “Agile Methodologies”, after the Agile

Manifesto was published in 2001. The Manifesto for Agile

Software Development,

also known as the Agile Manifesto,

was first proclaimed in 2001, after "agile methodology"

was originally introduced in the late 1980s and early

1990s. The manifesto came out of the DSDM

Consortium in 1994, although its roots go back to the mid-

1980s at DuPont and texts by James Martin and James

Kerr et al.

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 41

Organized by: City Engineering College, Bangalore, Karnataka - India

Fig:1

Agile principles

The Agile Manifesto is based on twelve principles:

• Customer satisfaction by early and continuous

delivery of valuable software

• Welcome changing requirements, even in late

development

• Working software is delivered frequently

(weeks rather than months)

• Close, daily cooperation between business

people and developers

• Projects are built around motivated individuals,

who should be trusted

• Face-to-face conversation is the best form of

communication (co-location)

• Working software is the principal measure of

progress

• Sustainable development, able to maintain a

constant pace

• Continuous attention to technical excellence

and good design

• Simplicity—the art of maximizing the amount

of work not done—is essential

• Best architectures, requirements, and designs

emerge from self-organizing teams

• Regularly, the team reflects on how to become

more effective, and adjusts accordingly

2. AGILE PROCESS PHILOSOPHY

Agile software development philosophy has its roots in the

reality of today’s markets. Agile software processes

attempt to deal with issues introduced by rapidly changing

and unpredictable markets. The “Manifesto for Agile

software development” [1] the basic ideas of the

philosophy are introduced through four basic values:

i] Individuals and interactions over processes and tools.

ii] Working software over comprehensive documentation.

iii] Customer collaboration over contract negotiations.

iv] Responding to change over following a plan.

The items to the right have value, however, the items on

the left define the agile philosophy. In this paper, we will

focus on the left hand side items to explain the agile

software development. We will now look at all the four

aspects in detail.

i] Individuals and interactions

Using adaptive process requires a very effective team of

developers. The team has to work well together to be more

effective. Face to face meetings have special importance in

agile processes. It is believed that people respond quicker

and transfer ideas more rapidly when talking face to face

than they can when reading or writing documentation.[3].

Extreme programming introduces the concept of pair

programming where two developers develop a module

together to provide much better and quicker output than the

same job done individually. The concept of synergy (i.e.

the interaction of two or more agents or forces so that the

combined effect is greater than the sum of their individual

effects) takes hold because a few designers, sharing a

common space, working together, can produce more code

quicker than can the same individuals working alone.[1].

In traditional methodologies treat people as resources that

are like replaceable part. As stated earlier they say that

individuals are not as important as their roles. They fail to

understand that each individual is dynamic and

unpredictable. When we are programming a computer, we

are controlling a predictable device. But when handling

human beings this approach fails. Treating individuals are

replaceable resources reduces their morale and they look

for much better working environments.

The traditional approach is more suited to a factory where

the workers are not the most intelligent people or the best

people to design and be creative. So here the approach of

separating the people who plan the system and the people

who construct is suited. But in software industry the

developers are intelligent, capable and competent people so

treating them in the same way does not help. According to

[2] the Taylorist notion of a separate planning department

that decides how things work works only if planners

understand how to do the job than those doing it, if you

have bright, motivated people doing the job then this does

not hold true.

Another important aspect of individuals and interactions is

that the team should be empowered to take all technical

decisions. At times fast decision making is needed, if we

have to wait every time for the management to approve it

then it slows down the whole process of development. So

power of taking technical decisions must rest in the hands

of technical people

Reading [2] we are advised that team members and

management must have an equal place in the project. This

does not mean that technical people will take the role of

management. Management will still retain its role of an

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 42

Organized by: City Engineering College, Bangalore, Karnataka - India

enabler but management should recognize the fact that

development team can also take technical decisions.

ii] Working software

In agile processes source code is the single most important

document while in the traditional approach (big design

upfront) the requirement’s document is the single most

important document. In big design upfront (BDUF) it is

possible to gather all the requirements upfront

(beforehand), prior to writing any code. This is a classical

approach which works well for mechanical industry where

we gather all requirements, get the customer to agree on

them and then apply procedures to restrict change.

Gathering of requirements beforehand gives project a level

of predictability. This predictability has a value and is very

critical when the systems in consideration are Life critical

systems where big requirements change could be a

disaster. For all other systems this predictability adds a

layer of documentation.

In this radically changing market it is not possible to gather

complete set of customer requirements that are stable and

unchanging. Customer is not always sure of what he wants.

He gets a better understanding of it only when he sees a

working model or a prototype of the system. This helps

him to visualize the final system better. Essentially “In

today’s economy the fundamental business forces are

changing the value of software features too rapidly. What

might be a good set of requirements now, is not a good set

in six months”.[2].this means that as time passes the

customer might want o add some feature which at that time

looks essential to have.

According to [3] Agile processes link code and

requirements tightly together. Users of agile processes

view requirements as fluid and changing. XP (Extreme

programming) introduces the idea of simplicity. It means

not to add unnecessary artifacts or activities to a project.

Eliminate everything not completely justified i.e. never

produce documents predicting the future as they have a

possibility of becoming outdated. According to [3] “the

larger the amount of documentation becomes, more effort

is needed to find the required information, and more effort

to keep it up to date. For example as the system evolves or

some changes are made to it, there arises a need to update

the documentation that was made earlier. The first

document the maintainer will go through to fix a bug is the

source code rather than a pile of documents. So too much

time should not be wasted on documentation, rather source

code should be documented as good as possible. Making

the code the actual design permits developers to move into

the coding phase more rapidly.

iii] Customer Collaboration

Whenever software development is done by a separate firm

the customers prefer fix price contracts in which they

specify their requirements, ask for a quotation of price, and

finally accept a price and leave the development to the

firm. Agile processes require customer to be on site. They

need customer to play an active part in the design process.

Customer effectively is on the development team and

works closely with developers to approve decisions and

guiding the project through his perspective. This role is

different from the traditional role of the customer and this

change affects the business side of the project also.

Traditionally in a fixed price contract the development

team generates a set of requirements leading to a

predictable outcome, applying predictive processes to

achieve goal. Agile methodologies say that requirements

can never be stable so the fixed price development

approach would not work in this case.

This does not mean we cannot budget what a project made

using agile approach would cost. Agile approach is to fix

time, price, and to allow the scope to vary in a controlled

manner.[3]. As the customer has finer control on the

project making changes based on feedback. At every

iteration customer and development team can check the

progress and decide with the development team whether to

alter the direction of project. A different business model is

required for such a setup. Hence it is essential that

customer and supplier arrive at a business plan supporting

customer collaboration over contract negotiations.

According to [2] a predictive process is often measured by

how well it met its plan. A project on-time and on-cost is

considered to be a success. For agile software development

the question is business value-did the customer get

software that’s more valuable to them than the cost put in.

Good agile software will build something different and

better than the original plan foresaw.[2].

iv] Responding to change

Today’s market is volatile and ever changing making it

impossible for a predictive process to work on stable set of

requirements. Responding to change than following the

laid out plan is what makes agile software development

successful in today’s market. Software development is

more of a design activity so it’s hard to plan and price. For

software development to be predictable there is need for

plenty of time, a large team, and stable requirements which

is not possible in small projects. The problem with

predictive processes is their difficult to map new

requirement to additional cost, as they cannot predict how

much it would cost to implement the new requirement.

Software is intangible in nature, it is difficult to see what

value a software feature has until we use it for real [2].

Only after seeing the early prototype or version can one

understand what features are important what are not. So

this means that requirements should be changeable. For

example a new technology or standard comes up then the

customer would demand compliance with it which is the

need of the hour for the customer to use an up to date

product.

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 43

Organized by: City Engineering College, Bangalore, Karnataka - India

So our approach should not be towards stopping change

but to determine how to better handle inevitable changes in

project. ”External environmental changes cause critical

variations. Because we cannot eliminate these changes,

driving down the cost of responding to them is the only

viable strategy”.[3].

The idea to respond to change is using an iterative

approach while developing where we produce working

versions of final software frequently that handle subset of

requirements. These working systems should be integrated

in the end to produce the final system. This is better than

having documents which can hide flaws. Untested code

can also hide certain flaws. But when we have people

working on the system we can unearth flaws faster.

Co-located teams working together producing code instead

of high maintenance documentation can help increase

productivity.[3]. These teams with onsite customer will

produce code that better reflects the customer’s

requirements.

3. AGILE PROCESSES

There are many agile processes; in this paper we will

discuss adaptive software development and Extreme

programming.

A] Adaptive Software Development

ASD (adaptive software development) was developed by

Jim Highsmith. It does not discuss milestones, methods,

and deliverables. ASD gives importance on applying ideas

originating in the world of complex adaptive systems. ASD

provides fundamental base to develop adaptive systems

from which arise agile and adaptive processes.[3]. Jim

Highsmith states that the premise of ASD is that outcomes

are naturally unpredictable, so we are wasting effort by

planning for it. Planning in the world of changing

requirements will never be successful. ASD replaces the

evolutionary life cycle by adaptive life cycle as shown in

figure 1.

Figure: Evolutionary Life cycle & Adaptive Life cycle [3].

ASD recognizes the fact that there is no point in

experimenting endlessly in search of success. So the first

phase of ASD is named “speculate” rather than planning

which is not suitable for unpredictable world. Speculation

means developing the good idea of where the project is

heading, and put mechanisms in place to adapt to changing

customer needs, changing technology and a changing

market.

Collaboration replaces build because of ASD’s recognition

that people are essential while making a successful

product. The customer collaborates in all activities of the

software creation to get what he needs from the system.

Collaboration is the activity of balancing: managing a

project, such as configuration control and change

management, with creativity the act of trusting people to

find creative answers in an unpredictable environment.

Learning replaces revise because revise is backward

looking.[3]. In the evolutionary life cycle revise means that

while change is necessary it should be based on original

plan i.e change cannot question original plan, it has to be in

conformance with original plan. Learning is the act of

gaining knowledge through experience. Learning is often

discouraged in predictable environments; we may lay out

things in advance and then follow then in design. In

learning we can question all previous assumptions, using

the results to decide in which direction to move.

ASD is not a methodology but rather is an approach that

must be adopted by an organization when applying agile

processes.

In an adaptive environment, learning challenges all

stakeholders-developers and their customers- to examine

their assumptions and to use the results of each

development cycle to adapt to the next.

- Jim Highsmith

As learning is a continuous process designs and plans must

change as development proceeds.

B] Extreme Programming

Figure: Extreme programming project [4].

The XP approach emphasizes customer involvement and

testing:

Early on in the project, the team focuses on exploration

and release planning; customer sits and writes stories, the

programmers estimates them, the customer chooses the

order in which the stories should be implemented.

Later, there is more focus on exploration. The team works

iteratively; customer writes tests for the stories to be

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 44

Organized by: City Engineering College, Bangalore, Karnataka - India

successful and answers questions while programmers

code.[5].

According to [2] the four basic building blocks (values) are

• Communication- Without communications project

schedules slip, quality suffers, and the customer’s

wants and needs are misinterpreted or overlooked.

• Feedback- the need to check our results is important.

Without feedback project might fail. Feedback tells

how the project is doing while providing directions for

future iterations. Feedback tells us where our project

stands and what mistakes were made so that we don’t

make them again.

• Simplicity- Do not add unnecessary artifacts or

activities to a project. Eliminate everything not

completely justified.

• Courage- Putting faith in the people over the process

requires courage. It is important to realize, however,

that if processes do become more important than the

people do, a project is headed toward failure.

The architecture of XP has following components

� Spike

� Metaphor

� First Iteration

� Small releases

� Refactoring

� Team practices

Spike

According to [5] during the release planning game, the

team has the opportunity to do spikes: quick throw away

(and thrown away) exploration into the nature of the

solution.

We decide the system approach based on the stories and

spikes. For example is the story is about managing orders

on the Internet then the solution we might think of contains

an application server, a web server, a database and a pair of

firewalls. The spikes one does in the early phase guides us

to the Deployment phase. Because spikes begin early on

one can be prepared with the installation of hardware and

software needed, so that project doesn’t get halted because

of inadequate resources.

Metaphor

An effective Metaphor helps guide your solution. In XP

metaphor acts as a conceptual framework and provides a

descriptive system of names. It identifies the key objects

and their interactions. The metaphor may change as one’s

understand the system better.

First iteration

The first iteration is the key in making the system come

together. From Extreme Programming explained (Kent

Beck)

“The first iteration puts the system in place. Pick stories for

the first iteration that will force one to create “the whole

system” even if it is in skeletal form. “

Small releases

XP’s small releases help jell the architecture quickly.[5].As

we are installing a few months work, we are forced to get

the essential structure together. We deliver the stories most

important to the user first. So we get immediate feedback

from the user which will help us correct the weak areas in

the architecture.

Refactoring

Refactoring is improving a computer program by re-

organizing its internal structure without altering its external

behavior. It helps us manage design without changing the

system’s behavior; therefore, we don’t risk the

functionality of our program while we improve its

architecture.[5].

Team Practices

The software architecture document is useful only if it tells

how developers implement the things the system is

supposed to do. XP forges the Software Architecture

Document that RUP (Rational unified process) values, but

still has architecture. Pair programming helps ensure that

the people know and use the approach the team is

using.[5].

Implementing Agile Processes

It is difficult to introduce agile processes into an

organization because of the resistance offered by the

employees to change in organizational structure. Adopting

agile processes will change job profiles and roles and pay

structure radically, so there is resistance. Developers are

either over enthusiastic about it or highly skeptical about it.

The over enthusiastic developers feel that agile means

“moving quickly” meaning minimum discipline. It is

important to understand that in agile processes decisions

are taken with forethought and reason and it’s not

experimentation. Other developers resist it because they

are followers of traditional approach and are familiar with

its working and believe that agile processes can produce

quality products.

Management is also uncomfortable with agile processes as

they cannot use Gantt charts and other documents to

manage the project.[3]. Traditionally managers analyze the

progress by seeing which artifacts have been created. More

emphasis on code and less on documentation worry them.

International Journal of Computer Sciences and Engineering Vol.-4(3), May 2016, E-ISSN: 2347-2693

International Conference on Computer Science and Technology Allies in Research-March 2016, || 45

Organized by: City Engineering College, Bangalore, Karnataka - India

4. BENEFITS OF AGILE SOFTWARE DEVELOPMENT

Agile methods grew out of the real-life project experiences

of leading software professionals who had experienced the

challenges and limitations of traditional waterfall

development on project after project. The approach

promoted by agile development is in direct response to the

issue associated with traditional software development

both in terms of overall philosophy as well as specific

processes.

Agile development, in its simplest form, offers a

lightweight framework for helping teams, given a

constantly evolving functional and technical landscape,

maintain a focus on the rapid delivery of business value

(i.e., œbang for the buck). As a result of this focus,

the benefits of agile software development are that

organizations are capable of significantly reducing the

overall risk associated with software development.

Customer satisfaction by rapid, continuous delivery of

useful software. Working software is delivered frequently

(weeks rather than months). Even late changes in

requirements are also welcomed.

In particular, agile development accelerates the delivery of

initial business value, and through a process of continuous

planning and feedback, is able to ensure that value is

continuing to be maximized throughout the development

process. As a result of this iterative planning and feedback

loop, teams are able to continuously align the delivered

software with desired business needs, easily adapting to

changing requirements throughout the process. By

measuring and evaluating status based on the undeniable

truth of working, testing software, much more accurate

visibility into the actual progress of projects is available.

Finally, as a result of following an agile process, at the

conclusion of a project is a software system that much

better addresses the business and customer needs.

 5. DISADVANTAGES WITH AGILE

In case of some software deliverables, especially the

large ones, it is difficult to assess the effort required at the

beginning of the software development life cycle.

There is lack of emphasis on necessary designing and

documentation.

The project can easily get taken off track if the customer

representative is not clear what final outcome that they

want.

Only senior programmers are capable of taking the kind

of decisions required during the development process.

Hence it has no place for newbie programmers, unless

combined with experienced resources.

5. CONCLUSION

Large organizations have heavy investments done in

BDUF (big design up front) processes. They have

preference for BDUF than agile processes as they have

business models requiring fixed price contracts and strong

inclination towards software engineering concepts. Life

critical systems project have the severity to use BDUF

processes, which also increases their cost and time to

produce. Organizations may have to learn to use agile

processes for their survival in market and be competitive.

We summarize that following factors suggest an adaptive

process

• Uncertain or volatile requirements

• Responsible and motivated developers

• Customers who understand and are willing to get

involved.

These factors suggest a predictable process

• A team of hundred

• Fixed price, fixed scope and contract.

One of the biggest challenges facing is how they handle

larger systems.[2].Extreme programming explicitly says

that it has been created for teams around 20 people. The

message is one should go agile when the requirements are

not stable and one cannot have a stable design and follow a

planned process.

References

[1] Manifesto for Agile software development;

http://agilealliance.com

[2] New methodology; Fowler; Martin;

http://www.martinfowler.com/articles/newMethodology.ht

ml

[3] Agile Software Development Processes- A Different

approach to Software design; Keith, Everette R;

http://www.agilealliance.com/articles/articles/ADifferentAp

proach.pdf

[4] www.extremeprogramming.org; Last modified January 26,

2003;

[5] Extreme Programming Explored; Wake, William; Addison

Wesley ISBN 0-201-73397-8; July 2001; Chapter 5

