
https://doi.org/10.26438/ijcse/v6si1.6065

 © 2018, IJCSE All Rights Reserved 60

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-6, Special Issue-1, Feb 2018 E-ISSN: 2347-2693

MPI performance guidelines for scalability

K.B. Manwade
1*

, D.B. Kulkarni
2

1
Dept. of CSE, Walchand College of Engineering, Sangli, India
2
Dept. of IT, Walchand College of Engineering, Sangli, India

*Corresponding Author: mkarveer@gmail.com, Tel.: +91-84129-68254

Available online at: www.ijcseonline.org

Abstract— MPI (Message Passing Interface) is most widely used parallel programming paradigm. It is used for application

development on small as well as large high-performance computing systems. MPI standard provides a specification for

different functions but it does not specify any performance guarantee for implementations. Nowadays, its various

implementations from both vendors and research groups are available. Users are expecting consistent performance from all

implementations and on all platforms. In literature, performance guidelines are defined for MPI communication, IO functions

and derived data types. By using these guidelines as a base we have defined guidelines for scalability of MPI communication

functions. Also, we have verified these guidelines by using benchmark application and on different MPI implementations such

as MPICH, open MPI. The experimental results show that point to point communication functions are scalable. It is quite

obvious as in point to point communication the only pair of processes is involved. Hence these guidelines are defined as

performance requirement by considering the semantics of these functions. All processes are involved in collective

communication functions; therefore defining performance guidelines for collective communication is difficult. In this paper,

we have defined the performance guidelines by considering the amount of data transferred in the function. Also, we have

verified our defined guidelines and reasons for violations of these guidelines are elaborated.

Keywords— Performance guidelines for MPI functions, Scalability of MPI functions, High-performance computing

I. INTRODUCTION

In [1], authors analyzed the performance of various

parallel programming paradigms like UPC, OpenMP, and

MPI. They conclude that MPI outperforms over other two

paradigms. Various implementations of MPI standards are

available. Users should be made aware of performance

portability of these implementations i.e. every

implementation of MPI standard gives the same performance.

Hence implementation-specific optimization in the program

is not required. Also MPI standard defines both specialized

as well as generalized communication functions. As per

requirement user can use them. The user expects good

performance from specialized functions than generalized one

but MPI standard does not ensure any performance guarantee.

In literature, various MPI self-consistent performance

guidelines are defined. The guidelines indicate common

sense expectation that an MPI function should perform no

worse than a combination of other MPI functions that can

implement the same functionality.
In [2], authors have introduced the notion of self-

consistent performance requirements for MPI

implementations. In this paper, they have defined and

verified guidelines for MPI communication functions for

varying data size. In [3], William D. Gropp et. al have

defined performance guidelines for MPI-IO functions. The

guidelines for MPI parallel I/O whose performance depends

on the semantics of MPI standard and not on underlying

hardware are termed as performance requirements. And those

whose performance depends on underlying hardware are

termed as performance expectations. In [4], performance

expectations and guidelines for MPI derived data types are

defined and verified.
This paper focuses on formulation and verification of

performance guidelines for MPI communication functions

with respect to varying number of processes. The rest of this

paper is organized as follows; Section II focuses on related

work in the domain of MPI performance guideline

verification. In section III, new performance guidelines for

scalability of MPI communication functions are defined. The

details of experimental setup, the benchmark used and results

obtained are elaborated in section IV. The conclusion of our

experiments and findings are given in section V.

II. RELATED WORK

 In [2], authors have introduced, formulated and

verified performance guidelines for MPI communication

functions. These guidelines are verified with respect to

varying data size. However, these guidelines are not verified

with respect to varying number of processes in the program.

In [3], performance guidelines are defined for MPI-IO

functions and are verified for varying data size as well as

varying number of processes.

 International Journal of Computer Sciences and Engineering Vol.6(1), Feb 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 61

 As a parallel I/O in MPI is more subtle its

guidelines can be categorized as performance requirements

& expectations. If the details of underlined I/O subsystem are

known and sure about its working then the guideline is

treated as performance requirement otherwise as

performance expectation. In [4], performance guidelines are

defined for MPI derived types and verified only for varying

data size. While defining guidelines five derived data type

constructors like contiguous, vector, index blocked, indexed

and structure is considered. Also, performance penalties

involved in disk movement to read/write derived data types

are considered.

 Various MPI benchmark frameworks are available

for automatic verification of MPI performance guidelines.

The PGMPI [5] framework, verify guidelines for all

collective communication functions. The guidelines for MPI

point to point communication and IO functions are not

verified by this framework. Another benchmark framework

for MPI communication functions is SKaMPI [6]. It provides

benchmark codes for point to point, collective and master-

slave communication patterns. It does not provide code for

IO functions.

III. PERFORMANCE GUIDELINES FOR MPI

COMMUNICATION FUNCTIONS

A. Point to point communications

 The performance guidelines for MPI point to point

communications for varying data size are defined in [2] as,

MPI_A(N) ≤ MPI_B(N)

to mean that MPI function A is not slower than MPI function

B and implement the operation for same data size N. On

similar line we have defined guidelines for varying number

of processes as

MPI_A(P) ≤ MPI_B(P)

to mean that MPI function A is not slower than MPI function

B and implement the same operation for the same number of

processes P. As a point to point communication takes place

between a pair of processes, a number of processes don't

affect on the performance of communication functions.

Therefore we have defined guidelines for point to point

communication similar to those defined in [2]. By

considering the semantics of point to point communication,

we have defined these guidelines as performance

requirements.

MPI_Isend(P) + MPI_wait() ≤ MPI_Send(P)

In blocking send message sending activity get completed or

sender can reuse buffer only when the entire message data is

copied into receiver's buffer. Whereas in immediate send

message data can be copied in an overlapping manner to

system buffer or receiver's buffer as soon as the sender start

writing data into the buffer. From this fact we have

formulated equation (3) as a performance requirement.

MPI_Rsend(P) ≤ MPI_Send(P)

Unlike blocking send, message data is copied to receiver's

buffer directly without buffering in case of ready send.

Therefore ready send will give better performance than

blocking send (equation 4).

MPI_Send(P) ≤ MPI_Ssend(P)

The synchronous send involves synchronization overhead;

therefore, its performance is worse than standard blocking

send. Hence the guideline defined as shown in equation 5.

MPI_Sendrecv(P) ≤ MPI_Isend(P) + MPI_

Recv(P) +MPI_wait(P)

MPI_Sendrecv(P) ≤ MPI_Send(P) + MPI_

Irecv(P) +MPI_wait(P)

The sendrecv function is used for bidirectional send and

receive between a pair of processes. This operation takes care

of cyclic dependency during send and receives the message,

but in case of independent send and receive the dependency

need to be resolved by the programmer. Because of this

factor sendrecv shows better performance than the

combination of Isend and Recv or Send and Irecv as shown

in equation 6 and 7.

B. Collective communications

 The performance of MPI collective functions

depends on the amount of data transferred by the function,

algorithm used for its implementation and number of

processes involved in the communication. Therefore defining

firm performance guidelines for collective communications

is difficult. By considering amount of data transferred as a

parameter, we have defined performance guidelines as,

MPI_A(P) ≤ MPI_B(P)

to mean that functions A transfers fewer data than function B,

therefore, it takes less time for communication than its

counterpart. The performance guidelines for collective

communications functions and the amount of data transferred

by these functions are given in Table 1.

Table 1 Performance guidelines for collective functions

Sr.

No.
Performance guidelines for MPI collective functions

1
MPI_Gather(P) ≤ MPI_Allgather(P)

(N Χ P) ≤ (N Χ P) Χ P

2
MPI_Alltoall(P) ≤ MPI_Allgather(P)

(N Χ P) ≤ (N Χ P) Χ P

3
MPI_Scatter(P) ≤ MPI_Bcast(P)

N ≤ (N Χ P)

4
MPI_Gather(P)+MPI_Bcast(P) ≤ MPI_Allgather(P)
(N Χ P)+ N ≤ (N Χ P) Χ P

5
MPI_Bcast(P) ≤ MPI_Scatter(P)+MPI_Allgather(P)

(N Χ P) Χ P ≤ (N)+(N Χ P)

6
MPI_Reduce(P) ≤ MPI_Allreduce(P)
(N Χ P) ≤ (N Χ P) Χ P

7 MPI_Reduce(P)+MPI_Bcast(P) ≤ MPI_Allreduce(P)

 International Journal of Computer Sciences and Engineering Vol.6(1), Feb 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 62

(N Χ P)+(N Χ P) ≤ (N Χ P) Χ P

8
MPI_Reducescatter(P) ≤ MPI_Reduce(P)+MPI_Scatterv(P)

(N Χ P)+N ≤ (N Χ P)+N*

9
MPI_Reduce(P) ≤ MPI_Reducescatter(P)+MPI_Gather(P)
(N Χ P) ≤ [(N Χ P)+N]+N

10
MPI_Allreduce(P)≤ MPI_Reducescatter(P)+MPI_Allgather(P)

(N Χ P) Χ P ≤ [(N Χ P)+N]+(N Χ P)

11
MPI_Reducescatter(P) ≤ MPI_Allreduce(P)
(N Χ P)+N ≤ [(N Χ P) Χ P])

12
MPI_Gather(P) ≤ MPI_Reduce(P)

(N Χ P)=(N Χ P)

13
MPI_Allgather(P) ≤ MPI_Allreduce(P)
(N Χ P)\times P=(N Χ P) Χ P

14
MPI_Gather(P) ≤ MPI_Gatherv(P)

(N Χ P)=(*N Χ P)

15
MPI_Scatter(P) ≤ MPI_Scatterv(P)
N ≤ N*

16
MPI_Allgather(P) ≤ MPI_Allgatherv(P)

(N Χ P)\times P ≤ (*N Χ P) Χ P

17
MPI_Alltoall(P) ≤ MPI_Alltoallv(P)
(N Χ P) ≤ (*N Χ P)

* Mark indicate than data size N is different for each process rather than N/P

IV. RESULTS AND DISCUSSION

A. Experimental set-up

 To verify the defined guidelines, experiments are

carried out on WCE-Rock cluster [7]. This cluster contains

three nodes connected using InfiniBand network and total 40

cores. Each core has the processing power of 2.25 GHz. The

total main memory in the cluster is 1 TB and physical storage

of 1622 GB. Two MPI libraries open MPI and MPICH are

used for verification of our defined guidelines.

 Different MPI benchmarks are available for

performance guideline verification. The OSU [8] micro-

benchmark contains code for point to point and collective

communications. The latency and bandwidth parameters are

used to measure the performance of communication

functions. ReproMPI [9], contains benchmark code for MPI

collective communication and their equivalent counterparts.

The performance is measured in terms of communication

latency. Performance of these codes is measured as

communication latency in seconds. The NAS [10]

benchmark are designed to evaluate the performance of MPI

functions. It contains mainly five kernels and three pseudo

code applications. We have OSU benchmark code and

measured the latency of communication for 1024 and

1048576 bytes data size for a different number of processes.

We have used Hockney model to represent communication

latency. Following terms are used to express communication

latency using Hockney model.

1. The latency for each message: α

2. The transfer time per byte: β

3. Number of processes: P

4. Size of the message: N

B. Results

Table 2. Verifications of performance guidelines for collective functions

Performance guidelines for MPI

collective functions

Open MPI MPICH

1024

bytes

1048576

bytes

1024

bytes

1048576

bytes

MPI_Rsend(P) ≤ MPI_Send(P) √ √ √ √

MPI_Send(P) ≤ MPI_Ssend(P) √ √ √ √

MPI_Sendrecv(P) ≤ MPI_Isend(P) +
MPI_Recv(P) + MPI_wait()

√ √ √ √

MPI_Sendrecv(P) ≤ MPI_Send(P) +

MPI_Irecv(P) + MPI_wait()

√ √ √ √

MPI_Gather(P) ≤ MPI_Allgather(P) √ √ √ √

MPI_Alltoall(P) ≤ MPI_Allgather(P) √ √ √ √

MPI_Scatter(P) ≤ MPI_Bcast(P) √ × √ √

MPI_Gather(P)+MPI_Bcast(P) ≤

MPI_Allgather(P)

√ √ √ √

MPI_Bcast(P) ≤
MPI_Scatter(P)+MPI_Allgather(P)

√ √ √ √

MPI_Reduce(P) ≤ MPI_Allreduce(P) √ √ √ √

MPI_Reduce(P)+MPI_Bcast(P) ≤

MPI_Allreduce(P)

√ √ √ √

MPI_Reducescatter(P) ≤

MPI_Reduce(P)+MPI_Scatterv(P)

√ √ √ √

MPI_Reduce(P) ≤
MPI_Reducescatter(P)+MPI_Gather(P)

√ × √ √

MPI_Allreduce(P)≤

MPI_Reducescatter(P)+MPI_Allgather(P)

√ √ √ √

MPI_Reducescatter(P) ≤
MPI_Allreduce(P)

√ √ √ √

MPI_Gather(P) ≈ MPI_Reduce(P) √ × √ √

MPI_Allgather(P) ≈ MPI_Allreduce(P) × × × ×
MPI_Gather(P) ≤ MPI_Gatherv(P) √ √ √ √

MPI_Scatter(P) ≤ MPI_Scatterv(P) √ √ √ √

MPI_Allgather(P) ≤ MPI_Allgatherv(P) √ √ √ √

MPI_Alltoall(P) ≤ MPI_Alltoallv(P) √ √ √ √

MPI_Isend(P)+MPI_wait() ≤

MPI_Send(P)

√ √ √ √

 The guidelines for point to point communications

for both data size: 1024 bytes and 1048576 bytes are verified

for both Open MPI and MPICH library. This is quite obvious

as the point to point communication takes place between the

pair of processes; therefore a number of processes will not

make any impact on the performance of communication

function. Most of the collective communication functions

guidelines are verified but few functions are not verified.

C. Violation of guidelines

 As shown in table 2, few collective communication

guidelines are violated on Open MPI and MPICH.

Approximately 5% of defined collective communication

guidelines are violated. The details of violated guidelines are

given below.

Case study 1: MPI_Scatter ≤ MPI_Bcast

 In Open MPI, scatter function is implemented by

using binomial tree algorithm [log2P × (α + N × β)] for a

small message and linear algorithm [(P-1) × (α + N × β)] for

a large message. Therefore this guideline is verified for a

small message as shown in figure 1. The broadcast algorithm

 International Journal of Computer Sciences and Engineering Vol.6(1), Feb 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 63

is implemented by using binomial tree algorithm [log2P × (α

+ N × β)] for a small message and splitted linear algorithm

[(P-1) × (α + N × β)] for a large message.

Therefore broadcast function shows better performance than

scatter collective communication as shown in figure 2.

Figure 1. Verification of guideline MPI_Scatter ≤ MPI_Bcast for small

message

Figure 2. Violation of guideline MPI_Scatter ≤ MPI_Bcast for large

message

Case study 2: MPI_Allreduce(P) ≤ MPI_Reducescatter(P)

+ MPI_Allgather(P)

 In Open MPI, to implement Allreduce function

recursive doubling algorithm [log2P × (α + N × β)] is used

for both small and large messages. To implement Reduce-

scatter and Allgather algorithm binomial tree algorithm

[log2P × (α + N × β)] for a small message and linear

algorithm [(P-1) × (α + N × β)] for a large message is used.

As latency of recursive doubling and binomial tree algorithm

is same the guideline is verified for a small message as

shown in figure 3; but the latency of linear algorithm is more

than recursive doubling algorithm, the guideline is violated

as shown in figure 4.

Figure 3. Verification of guideline MPI_Allreduce(P) ≤

MPI_Reducescatter(P) + MPI_Allgather(P) for Small message

Figure 4. Violation of guideline MPI_Allreduce(P) ≤

MPI_Reducescatter(P) + MPI_Allgather(P) for large message

Case study 3: MPI_Gather(P) ≈ MPI_Reduce(P)

 In Open MPI, to implement Gather function

binomial tree algorithm [log2P × (α + N × β)] is used for

small message and linear algorithm with 32 KB segmentation

is used for large messages. To implement Reduce function

binomial tree algorithm [log2P × (α + N × β)] is used for

small message and a linear algorithm is used for the large

message. Because of segmentation overhead, the guideline is

violated for a large message (figure 6).

Figure 5. Verification of guideline MPI_Gather(P) ≈ MPI_Reduce(P) for

small message

 International Journal of Computer Sciences and Engineering Vol.6(1), Feb 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 64

Figure 6. Violation of guideline MPI_Gather(P) ≈ MPI_Reduce(P) for

large message

Case study 4: MPI_Allgather(P) ≈ MPI_Allreduce(P)

 In open MPI to implement Allgather function linear

and binomial tree algorithms are used. For small message

linear algorithm [(P-1) × (α + N × β)] is used and for large

message, binomial tree algorithm [log2P × (α + N × β)] is

used. Whereas to implement Allreduce function recursive

doubling algorithm [log2P × (α + N × β)] is used for both

small and large messages. Therefore, as shown in figure 7

and 8 the defined performance guideline between Allgather

and Allreduce are violated for both small and large message.

Figure 7. Violation of guideline MPI_Allgather(P) ≈ MPI_Allreduce(P) for

small message

Figure 8. Violation of guideline MPI_Allgather(P) ≈ MPI_Allreduce(P) for

small message

V. CONCLUSION AND FUTURE SCOPE

 Though MPI is a standard programming paradigm

for parallel programming, it requires improvement in various

areas like performance, scalability, fault tolerance, support

for debugging and verification, topology-aware process

placement, derived data types, collective communication,

parallel IO etc. We have defined new guidelines and

experimentally verified them.

 The experimental result shows that defined

guidelines are verified except few guidelines. The scalability

guidelines for point to point communication functions are

verified as a point to point communication takes place

between a pair of processes. Therefore a number of processes

in the program will not affect on communication latency.

Hence all guidelines for point to point communication are

verified. In case of collective communication functions, the

communication latency depends on a number of processes in

the program and algorithm used for its implementation.

Therefore even though both specific and general collective

function transfer same amount of data, the guidelines get

violated because a different algorithm is used for

implementation of collective communication functions.

Approximately 5 % of defined guidelines are violated.

 In future, we are going to extend our work to verify

the guidelines for MPI-IO functions for scalability.

REFERENCES

[1] A. Mallón, Guillermo L. Taboada, Carlos Teijeiro, Juan Touriño,
Basilio B. Fraguela, Andrés Gómez, Ramón Doallo, J. Carlos
Mouriño, “Performance Evaluation of MPI, UPC and OpenMP on
Multicore Architectures”, Recent Advances in Parallel Virtual
Machine and Message Passing Interface. EuroPVM/MPI 2009. Lecture
Notes in Computer Science, pp. 174–184, 2009.

[2] William D. Gropp, Rajeev Thakur, “Self-consistent MPI performance
guidelines”, IEEE Transaction on parallel and distributed systems,
2005.

[3] William D. Gropp, Dries Kimpe, Robert Ross, Rajeev Thakur and
Jesper Larsson Traff, “Self-consistent MPI-IO performance
requirements and expectations”, Recent Advances in Parallel Virtual
Machine and Message Passing Interface. EuroPVM/MPI 2008. Lecture
Notes in Computer Science, 2008.

[4] William D. Gropp, Dries Kimpe, Robert Ross, Rajeev Thakur and
Jesper Larsson Traff, “Performance Expectations and Guidelines for
MPI Derived Datatypes”, Recent Advances in the Message Passing
Interface. EuroMPI 2011. Lecture Notes in Computer Science, 2011.

[5] Sascha Hunold, Alexandra Carpen-Amarie, Felix Donatus Lübbe, and
Jesper Larsson Träff TU Wien, “Automatic verification of self-
consistent MPI performance guidelines”, Parallel Processing, Euro-Par
2016. Lecture Notes in Computer Science, 2016.

[6] Ralf Reussner, Peter Sanders, and Jesper Larsson Träff, “SKaMPI: A
Comprehensive Benchmark for Public Benchmarking of MPI,” Journal
of Scientific Programming, vol. 10, issue 1, pp. 55-65, 2002.

[7] WCE Rock Cluster, High performance computing cluster, URL:
http://wce.ac.in/it/landing-page.php?id=9.

 International Journal of Computer Sciences and Engineering Vol.6(1), Feb 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 65

[8] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, P.
Wyckoff, and D. K. Panda, “Micro-Benchmark Performance
Comparison of High-Speed Cluster Interconnects” , Proceedings of
11th Symposium on High Performance Interconnects, 2003.

[9] Hunold, S., Carpen-Amarie, A., “Reproducible MPI benchmarking is
still not as easy as you think”, IEEE Transactions on Parallel and
Distributed Systems , vol. 27, issue 12, 2016.

[10] Subhash Saini, Robert Ciotti,Brian T. N. Gunney, Thomas E. Spelce,
Alice Koniges, Don Dossa, Panagiotis Adamidis, Rolf Rabenseifner,
Sunil R. Tiyyagura, Matthias Mueller, “Performance Evaluation of
Supercomputers using HPCC and IMB Benchmarks”, Journal of
Computer and System Sciences, vol. 74, issue 6, 2008.

Authors Profile

Mr. K. B. Manwade has completed BE in Computer
Science & Engineering from Walchand College of

Engineering, Sangli in 2004. He has completed MTech

degree in Computer Science & Technology from

Department of Technology, Shivaji University,

Kolhapur in 2008. Currently, he is pursuing Ph.D.

degree in Computer Science and Engineering at

Walchand College of Engineering, Sangli (A Ph.D.

research center of Shivaji University, Kolhapur).

Dr. D. B. Kulkarni received the doctorate degree in
Computer Science and Engineering from Shivaji

University, Kolhapur in the year 2005. Currently, he is

a professor in Information Technology Department of

Walchand College of Engineering, where he teaches

many courses in the area of Computer Science. During

his professional life, he has been involved in several
R&D projects funded by AICTE, DRDO and UGC.
Recently he received Early Adopter award of National Science Foundation's
(NSF) of Technical Committee on Parallel Processing (TCPP) of US$1500 for

framing and adapting curriculum on “Parallel Computing” in UG and PG

curriculum in the institute. He was Visiting Professor in Institute of Computer
Technology (ICT) of Vienna University of Technology, Austria, in 2010. He is

a coauthor of tens of scientific papers published in international journals and

conference proceedings. His research interests include the area of High-

Performance computing and Computer Network.

