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Abstract— MPI (Message Passing Interface) is most widely used parallel programming paradigm. It is used for application 

development on small as well as large high-performance computing systems. MPI standard provides a specification for 

different functions but it does not specify any performance guarantee for implementations. Nowadays, its various 

implementations from both vendors and research groups are available. Users are expecting consistent performance from all 

implementations and on all platforms. In literature, performance guidelines are defined for MPI communication, IO functions 

and derived data types. By using these guidelines as a base we have defined guidelines for scalability of MPI communication 

functions. Also, we have verified these guidelines by using benchmark application and on different MPI implementations such 

as MPICH, open MPI. The experimental results show that point to point communication functions are scalable. It is quite 

obvious as in point to point communication the only pair of processes is involved. Hence these guidelines are defined as 

performance requirement by considering the semantics of these functions. All processes are involved in collective 

communication functions; therefore defining performance guidelines for collective communication is difficult. In this paper, 

we have defined the performance guidelines by considering the amount of data transferred in the function. Also, we have 

verified our defined guidelines and reasons for violations of these guidelines are elaborated. 
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I.  INTRODUCTION  

In [1], authors analyzed the performance of various 

parallel programming paradigms like UPC, OpenMP, and 

MPI. They conclude that MPI outperforms over other two 

paradigms. Various implementations of MPI standards are 

available. Users should be made aware of performance 

portability of these implementations i.e. every 

implementation of MPI standard gives the same performance. 

Hence implementation-specific optimization in the program 

is not required. Also MPI standard defines both specialized 

as well as generalized communication functions. As per 

requirement user can use them. The user expects good 

performance from specialized functions than generalized one 

but MPI standard does not ensure any performance guarantee. 

In literature, various MPI self-consistent performance 

guidelines are defined. The guidelines indicate common 

sense expectation that an MPI function should perform no 

worse than a combination of other MPI functions that can 

implement the same functionality. 
In [2], authors have introduced the notion of self-

consistent performance requirements for MPI 

implementations. In this paper, they have defined and 

verified guidelines for MPI communication functions for 

varying data size. In [3], William D. Gropp et. al have 

defined performance guidelines for MPI-IO functions. The 

guidelines for MPI parallel I/O whose performance depends 

on the semantics of MPI standard and not on underlying 

hardware are termed as performance requirements. And those 

whose performance depends on underlying hardware are 

termed as performance expectations. In [4], performance 

expectations and guidelines for MPI derived data types are 

defined and verified.  
This paper focuses on formulation and verification of 

performance guidelines for MPI communication functions 

with respect to varying number of processes. The rest of this 

paper is organized as follows; Section II focuses on related 

work in the domain of MPI performance guideline 

verification. In section III, new performance guidelines for 

scalability of MPI communication functions are defined. The 

details of experimental setup, the benchmark used and results 

obtained are elaborated in section IV. The conclusion of our 

experiments and findings are given in section V. 
 

II. RELATED WORK  

 In [2], authors have introduced, formulated and 

verified performance guidelines for MPI communication 

functions. These guidelines are verified with respect to 

varying data size. However, these guidelines are not verified 

with respect to varying number of processes in the program. 

In [3], performance guidelines are defined for MPI-IO 

functions and are verified for varying data size as well as 

varying number of processes. 
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 As a parallel I/O in MPI is more subtle its 

guidelines can be categorized as performance requirements 

& expectations. If the details of underlined I/O subsystem are 

known and sure about its working then the guideline is 

treated as performance requirement otherwise as 

performance expectation. In [4], performance guidelines are 

defined for MPI derived types and verified only for varying 

data size. While defining guidelines five derived data type 

constructors like contiguous, vector, index blocked, indexed 

and structure is considered. Also, performance penalties 

involved in disk movement to read/write derived data types 

are considered. 

 Various MPI benchmark frameworks are available 

for automatic verification of MPI performance guidelines. 

The PGMPI [5] framework, verify guidelines for all 

collective communication functions. The guidelines for MPI 

point to point communication and IO functions are not 

verified by this framework. Another benchmark framework 

for MPI communication functions is SKaMPI [6]. It provides 

benchmark codes for point to point, collective and master-

slave communication patterns. It does not provide code for 

IO functions. 

III. PERFORMANCE GUIDELINES FOR MPI 

COMMUNICATION FUNCTIONS 

A. Point to point communications 

 The performance guidelines for MPI point to point 

communications for varying data size are defined in [2] as, 

MPI_A(N) ≤ MPI_B(N) 

to mean that MPI function A is not slower than MPI function 

B and implement the operation for same data size N. On 

similar line we have defined guidelines for varying number 

of processes as 

MPI_A(P) ≤ MPI_B(P) 

to mean that MPI function A is not slower than MPI function 

B and implement the same operation for the same number of 

processes P. As a point to point communication takes place 

between a pair of processes, a number of processes don't 

affect on the performance of communication functions. 

Therefore we have defined guidelines for point to point 

communication similar to those defined in [2]. By 

considering the semantics of point to point communication, 

we have defined these guidelines as performance 

requirements. 

MPI_Isend(P) + MPI_wait() ≤ MPI_Send(P) 

In blocking send message sending activity get completed or 

sender can reuse buffer only when the entire message data is 

copied into receiver's buffer. Whereas in immediate send 

message data can be copied in an overlapping manner to 

system buffer or receiver's buffer as soon as the sender start 

writing data into the buffer. From this fact we have 

formulated equation (3) as a performance requirement. 

MPI_Rsend(P) ≤ MPI_Send(P)  

Unlike blocking send, message data is copied to receiver's 

buffer directly without buffering in case of ready send. 

Therefore ready send will give better performance than 

blocking send (equation 4). 

MPI_Send(P) ≤ MPI_Ssend(P)  

The synchronous send involves synchronization overhead; 

therefore, its performance is worse than standard blocking 

send. Hence the guideline defined as shown in equation 5. 

MPI_Sendrecv(P) ≤ MPI_Isend(P) + MPI_ 

Recv(P) +MPI_wait(P)  

MPI_Sendrecv(P) ≤ MPI_Send(P) + MPI_ 

Irecv(P) +MPI_wait(P)  

The sendrecv function is used for bidirectional send and 

receive between a pair of processes. This operation takes care 

of cyclic dependency during send and receives the message, 

but in case of independent send and receive the dependency 

need to be resolved by the programmer. Because of this 

factor sendrecv shows better performance than the 

combination of Isend and Recv or Send and Irecv as shown 

in equation 6 and 7. 

B. Collective communications 

 The performance of MPI collective functions 

depends on the amount of data transferred by the function, 

algorithm used for its implementation and number of 

processes involved in the communication. Therefore defining 

firm performance guidelines for collective communications 

is difficult. By considering amount of data transferred as a 

parameter, we have defined performance guidelines as, 

MPI_A(P) ≤ MPI_B(P) 

to mean that functions A transfers fewer data than function B, 

therefore, it takes less time for communication than its 

counterpart. The performance guidelines for collective 

communications functions and the amount of data transferred 

by these functions are given in Table 1. 

Table 1 Performance guidelines for collective functions 

Sr. 

No. 
Performance guidelines for MPI collective functions 

1 
MPI_Gather(P) ≤ MPI_Allgather(P) 

(N Χ P) ≤ (N Χ P) Χ P 

2 
MPI_Alltoall(P) ≤ MPI_Allgather(P) 

(N Χ P) ≤ (N Χ P) Χ P 

3 
MPI_Scatter(P) ≤ MPI_Bcast(P) 

N ≤ (N Χ P) 

4 
MPI_Gather(P)+MPI_Bcast(P) ≤ MPI_Allgather(P) 
(N Χ P)+ N ≤ (N Χ P) Χ P 

5 
MPI_Bcast(P) ≤ MPI_Scatter(P)+MPI_Allgather(P) 

(N Χ P) Χ P ≤ (N)+(N Χ P) 

6 
MPI_Reduce(P) ≤ MPI_Allreduce(P) 
(N Χ P) ≤ (N Χ P) Χ P 

7 MPI_Reduce(P)+MPI_Bcast(P) ≤ MPI_Allreduce(P) 
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(N Χ P)+(N Χ P) ≤ (N Χ P) Χ P 

8 
MPI_Reducescatter(P) ≤ MPI_Reduce(P)+MPI_Scatterv(P) 

(N Χ P)+N ≤ (N Χ P)+N* 

9 
MPI_Reduce(P) ≤ MPI_Reducescatter(P)+MPI_Gather(P) 
(N Χ P) ≤ [(N Χ P)+N]+N 

10 
MPI_Allreduce(P)≤ MPI_Reducescatter(P)+MPI_Allgather(P) 

(N Χ P) Χ P ≤ [(N Χ P)+N]+(N Χ P) 

11 
MPI_Reducescatter(P) ≤ MPI_Allreduce(P) 
(N Χ P)+N ≤ [(N Χ P) Χ P]) 

12 
MPI_Gather(P) ≤ MPI_Reduce(P) 

(N Χ P)=(N Χ P) 

13 
MPI_Allgather(P) ≤ MPI_Allreduce(P) 
(N Χ P)\times P=(N Χ P) Χ P 

14 
MPI_Gather(P) ≤ MPI_Gatherv(P) 

(N Χ P)=(*N Χ P) 

15 
MPI_Scatter(P) ≤ MPI_Scatterv(P) 
N ≤ N* 

16 
MPI_Allgather(P) ≤ MPI_Allgatherv(P) 

(N Χ P)\times P ≤ (*N Χ P) Χ P 

17 
MPI_Alltoall(P) ≤ MPI_Alltoallv(P) 
(N Χ P) ≤ (*N Χ P) 

* Mark indicate than data size N is different for each process rather than N/P 

IV. RESULTS AND DISCUSSION 

A. Experimental set-up  

 To verify the defined guidelines, experiments are 

carried out on WCE-Rock cluster [7]. This cluster contains 

three nodes connected using InfiniBand network and total 40 

cores. Each core has the processing power of 2.25 GHz. The 

total main memory in the cluster is 1 TB and physical storage 

of 1622 GB. Two MPI libraries open MPI and MPICH are 

used for verification of our defined guidelines.   

 Different MPI benchmarks are available for 

performance guideline verification. The OSU [8] micro-

benchmark contains code for point to point and collective 

communications. The latency and bandwidth parameters are 

used to measure the performance of communication 

functions. ReproMPI [9], contains benchmark code for MPI 

collective communication and their equivalent counterparts. 

The performance is measured in terms of communication 

latency. Performance of these codes is measured as 

communication latency in seconds. The NAS [10] 

benchmark are designed to evaluate the performance of MPI 

functions. It contains mainly five kernels and three pseudo 

code applications. We have OSU benchmark code and 

measured the latency of communication for 1024 and 

1048576 bytes data size for a different number of processes. 

We have used Hockney model to represent communication 

latency. Following terms are used to express communication 

latency using Hockney model. 

1. The latency for each message: α 

2. The transfer time per byte: β 

3. Number of processes: P 

4. Size of the message: N 

B. Results 

Table 2. Verifications of performance guidelines for collective functions 

Performance guidelines for MPI 

collective functions 

Open MPI MPICH 

1024 

bytes 

1048576 

bytes 

1024 

bytes 

1048576 

bytes 

MPI_Rsend(P) ≤ MPI_Send(P) √ √ √ √ 

MPI_Send(P) ≤ MPI_Ssend(P) √ √ √ √ 

MPI_Sendrecv(P) ≤ MPI_Isend(P) + 
MPI_Recv(P) + MPI_wait() 

√ √ √ √ 

MPI_Sendrecv(P) ≤ MPI_Send(P) + 

MPI_Irecv(P) + MPI_wait() 

√ √ √ √ 

MPI_Gather(P) ≤ MPI_Allgather(P) √ √ √ √ 

MPI_Alltoall(P) ≤ MPI_Allgather(P) √ √ √ √ 

MPI_Scatter(P) ≤ MPI_Bcast(P) √ × √ √ 

MPI_Gather(P)+MPI_Bcast(P) ≤ 

MPI_Allgather(P) 

√ √ √ √ 

MPI_Bcast(P) ≤ 
MPI_Scatter(P)+MPI_Allgather(P) 

√ √ √ √ 

MPI_Reduce(P) ≤ MPI_Allreduce(P) √ √ √ √ 

MPI_Reduce(P)+MPI_Bcast(P) ≤ 

MPI_Allreduce(P) 

√ √ √ √ 

MPI_Reducescatter(P) ≤ 

MPI_Reduce(P)+MPI_Scatterv(P) 

√ √ √ √ 

MPI_Reduce(P) ≤ 
MPI_Reducescatter(P)+MPI_Gather(P) 

√ × √ √ 

MPI_Allreduce(P)≤ 

MPI_Reducescatter(P)+MPI_Allgather(P) 

√ √ √ √ 

MPI_Reducescatter(P) ≤ 
MPI_Allreduce(P) 

√ √ √ √ 

MPI_Gather(P) ≈ MPI_Reduce(P) √ × √ √ 

MPI_Allgather(P) ≈ MPI_Allreduce(P) × × × × 
MPI_Gather(P) ≤ MPI_Gatherv(P) √ √ √ √ 

MPI_Scatter(P) ≤ MPI_Scatterv(P) √ √ √ √ 

MPI_Allgather(P) ≤ MPI_Allgatherv(P) √ √ √ √ 

MPI_Alltoall(P) ≤ MPI_Alltoallv(P) √ √ √ √ 

MPI_Isend(P)+MPI_wait() ≤ 

MPI_Send(P) 

√ √ √ √ 

 The guidelines for point to point communications 

for both data size: 1024 bytes and 1048576 bytes are verified 

for both Open MPI and MPICH library. This is quite obvious 

as the point to point communication takes place between the 

pair of processes; therefore a number of processes will not 

make any impact on the performance of communication 

function. Most of the collective communication functions 

guidelines are verified but few functions are not verified. 

C. Violation of guidelines 

 As shown in table 2, few collective communication 

guidelines are violated on Open MPI and MPICH. 

Approximately 5% of defined collective communication 

guidelines are violated. The details of violated guidelines are 

given below. 

Case study 1: MPI_Scatter ≤ MPI_Bcast 

 In Open MPI, scatter function is implemented by 

using binomial tree algorithm [log2P × (α + N × β)] for a 

small message and linear algorithm [(P-1) × (α + N × β)] for 

a large message. Therefore this guideline is verified for a 

small message as shown in figure 1. The broadcast algorithm 
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is implemented by using binomial tree algorithm [log2P × (α 

+ N × β)] for a small message and splitted linear algorithm 

[(P-1) × (α + N × β)] for a large message.  

Therefore broadcast function shows better performance than 

scatter collective communication as shown in figure 2. 

 

Figure 1.  Verification of guideline MPI_Scatter ≤ MPI_Bcast for small 

message  

 

Figure 2.  Violation of guideline MPI_Scatter ≤ MPI_Bcast for large 

message 

Case study 2: MPI_Allreduce(P) ≤ MPI_Reducescatter(P) 

+ MPI_Allgather(P) 

 In Open MPI, to implement Allreduce function 

recursive doubling algorithm [log2P × (α + N × β)] is used 

for both small and large messages. To implement Reduce-

scatter and Allgather algorithm binomial tree algorithm 

[log2P × (α + N × β)] for a small message and linear 

algorithm [(P-1) × (α + N × β)] for a large message is used. 

As latency of recursive doubling and binomial tree algorithm 

is same the guideline is verified for a small message as 

shown in figure 3; but the latency of linear algorithm is more 

than recursive doubling algorithm, the guideline is violated 

as shown in figure 4. 

 

Figure 3.  Verification of guideline MPI_Allreduce(P) ≤ 

MPI_Reducescatter(P) + MPI_Allgather(P) for Small message 

 

Figure 4.  Violation of guideline MPI_Allreduce(P) ≤ 

MPI_Reducescatter(P) + MPI_Allgather(P) for large message 

Case study 3: MPI_Gather(P) ≈ MPI_Reduce(P) 

 In Open MPI, to implement Gather function 

binomial tree algorithm [log2P × (α + N × β)] is used for 

small message and linear algorithm with 32 KB segmentation 

is used for large messages. To implement Reduce function 

binomial tree algorithm [log2P × (α + N × β)] is used for 

small message and a linear algorithm is used for the large 

message. Because of segmentation overhead, the guideline is 

violated for a large message (figure 6).  

 

Figure 5.  Verification of guideline MPI_Gather(P) ≈ MPI_Reduce(P) for 

small message 
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Figure 6.  Violation of guideline MPI_Gather(P) ≈ MPI_Reduce(P) for 

large message 

Case study 4: MPI_Allgather(P) ≈ MPI_Allreduce(P) 

 In open MPI to implement Allgather function linear 

and binomial tree algorithms are used. For small message 

linear algorithm [(P-1) × (α + N × β)] is used and for large 

message, binomial tree algorithm [log2P × (α + N × β)] is 

used. Whereas to implement Allreduce function recursive 

doubling algorithm [log2P × (α + N × β)] is used for both 

small and large messages. Therefore, as shown in figure 7 

and 8 the defined performance guideline between Allgather 

and Allreduce are violated for both small and large message. 

 

Figure 7.  Violation of guideline MPI_Allgather(P) ≈ MPI_Allreduce(P) for 

small message 

 

Figure 8.  Violation of guideline MPI_Allgather(P) ≈ MPI_Allreduce(P) for 

small message 

V. CONCLUSION AND FUTURE SCOPE  

 Though MPI is a standard programming paradigm 

for parallel programming, it requires improvement in various 

areas like performance, scalability, fault tolerance, support 

for debugging and verification, topology-aware process 

placement, derived data types, collective communication, 

parallel IO etc. We have defined new guidelines and 

experimentally verified them.  

 The experimental result shows that defined 

guidelines are verified except few guidelines. The scalability 

guidelines for point to point communication functions are 

verified as a point to point communication takes place 

between a pair of processes. Therefore a number of processes 

in the program will not affect on communication latency. 

Hence all guidelines for point to point communication are 

verified. In case of collective communication functions, the 

communication latency depends on a number of processes in 

the program and algorithm used for its implementation. 

Therefore even though both specific and general collective 

function transfer same amount of data, the guidelines get 

violated because a different algorithm is used for 

implementation of collective communication functions. 

Approximately 5 % of defined guidelines are violated.  

 In future, we are going to extend our work to verify 

the guidelines for MPI-IO functions for scalability. 
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