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Abstract— Many algorithms in the field of image processing support high degree of inherent parallelism. Edge detection is one 

of the most important processes in medical image processing. Edge detection is an independent process to support parallel 

computation of each pixel intensity changes by their neighbourhood pixels. Magnetic resonance imaging (MRI) scanner 

provides stack of 2D slices with millions of pixels and thus require much time for edge detection process in central processing 

unit (CPU) systems. In the proposed work, graphics processing unit (GPU) based parallel edge detection methods are 

developed for MRI volume using compute unified device architecture (CUDA). Each pixel operation in edge detection is 

independent and thus GPU provides high level data parallelism using threads per voxel method. Basic edge detection operators 

such as Roberts, Prewitt, Sobel, Marr- Hildreth and Canny are used in this experiment. The computational time of parallel 

GPU-CUDA based methods were compared with the serial CPU implementation. Results showed that parallel implementation 

is about 11× to 98× times faster than the serial CPU implementation. 
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I.  INTRODUCTION  

Magnetic resonance imaging (MRI) provides the huge 

amount of data about the soft tissue characteristics of human 

body that helps to improve the diagnosis more accurate and 

reliable than other imaging modalities [1]. Manual diagnosis 

of MR images is a time consuming and painstaking task to 

the clinician due to large number of 2D slices produced by 

the MRI scanner [2]. In recent years, rapid development of 

semiconductor results the integration of much transistors in a 

single unit and named as GPU in order to solve the 

computational problems. GPU programming is a new 

technique to improve the speed and quality of the medical 

image applications [3]. CUDA is a platform for GPU 

programming to obtain data parallelism using single 

instruction multiple threads (SIMT) concept. 

Edge detection is a pre and post processing technique for 

extracting features for classification, object segmentation and 

visualization in medical image processing [4]. Edge detection 

is an independent process to each pixel and computed from 

intensity changes of its neighborhood pixels. Edge detection 

in MRI volume is an expensive process in CPU. To reduce 

the computational time, we proposed parallel edge detection 

methods for MRI volume using CUDA. 

Currently, several parallel algorithms were developed for 

edge detection using GPU-CUDA. Gong and Hao 

implemented a parallel edge detector for Roberts operator 

using GPU [5]. The experiment showed that the method 

given ten times faster than traditional Roberts edge detector 

implemented in CPU. Jain et al., proposed a method parallel 

for Sobel operator [6]. They achieved the speed gain upto 

262× – 943× for two kernel functions and 120× – 455× for 

three kernel functions. Hossain et al. developed a parallel 

method for sobel edge detector using NVIDIA GTX 550Ti 

GPU [7]. The computation time of the parallel method was 

compared with convention CPU time and accelerated upto 

4×.  

Ogawa et al., proposed a efficient implementation of Canny 

edge detection on GPU using CUDA [8]. The experimental 

results showed that the implementation of parallel Canny 

edge detection achieved 61× faster than the serial 

implementation in CPU. Cheikh et al. implemented a parallel 

Canny edge detector in multi-core CPU and many-core GPU 

using the matrix laboratory (MATLAB), C++, Open Multi-

Processing (OpenMP) and CUDA [9]. The parallel method 

reduced the computational time upto 33×. Emrani et al., 

developed a parallel method for various edge detection 

techniques using CUDA, open source computer vision 

(OpenCV), and MATLAB [10]. The comparison of results 

showed that the parallel Canny method on GPU using the 

CUDA platform given 2× – 100× speeder than CPU based 

implementation using the OpenCV and MATLAB platforms. 

This paper proposed parallel edge detection methods for 3D 

MR volumes using GPU-CUDA computing. In edge 

detection process, pixel operations are independent from 

each other and GPU can provide high level of data 
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parallelism using threads per voxel. The popular basic edge 

detectors such as Roberts, Prewitt, Sobel, Marr- Hildreth and 

Canny are used in this experiment. NVIDIA Quadro K5000 

GPU has Kepler architecture used to implement these 

parallel edge detection methods. The computational time of 

parallel methods were compared with the serial 

implementation using speedup folds metrics (×).  

The rest of this paper is organized as follows; Section II 

presents the introduction about GPU programming and 

CUDA computing. Section III describes the traditional edge 

detection methods; Section IV reports parallel 

implementation of edge detectors; Section V discusses the 

results of this experiment; Finally, section VI concludes the 

paper. 

II. GPU-CUDA  

GPU has massively parallel computing architecture that 

connected to CPU and completely separated from 

motherboard. GPU architecture includes M number of 

streaming multiprocessors (SM), N number of co-processor 

per SM, ALU's, control units and various types of memories 

to support data parallelism [11]. NVIDIA introduced its own 

GPU programming language called CUDA in 2006. CUDA 

is an extension of the C programming and executed in either 

host (CPU) or device (GPU) with their memory support. 

Host code does not support data parallelism and device code 

exhibit rich amount of data parallelism. 

Programming architecture of GPU – CUDA is shown in 

figure 1. CUDA is capable to execute large amount of 

parallel threads and the threads are organized into grids and 

thread blocks. Device code executes the thread into two level 

of parallelism which includes parallel block in grid and 

parallel thread in the block. Each block (blockIdx) and thread 

(threadIdx) has a unique ID. The total number of threads in a 

block is 1024. 

Figure 2 shows the memory architecture of GPU – CUDA. 

GPU memories are register memory, local memory, shared 

memory, global memory, constant memory and texture 

memory [12]. Threads have their own limited register and 

local memory. Frequently accessed variables are stored in 

registers. Every block has its own shared memory of size 16 

KB or 48KB and all threads in a block can access the shared 

memory. Constant memory is a read only memory that can 

be accessed by all threads in a grid. Texture memory is used 

in visualization process and the size is 32 KB per 

multiprocessor. Global memory is a largest memory that 

provides read and write access to all threads. The global 

memory supports transfer the data to and from the device for 

computation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Programming architecture of GPU- CUDA 
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Figure 2. Memory architecture of GPU-CUDA 

III. EDGE DETECTION METHODS 

Edges are the set of connected pixels occurs at the boundary 

between two different regions of an image. Edge detection 

always demands in the field of object identification, feature 

extraction and classification. Edges can be obtained using 

first order derivatives or gradient and mathematically defined 

as follows: 

                  
 

   
j

jiI
j

i

jiI
ijiI











,ˆ,ˆ,
                            (1) 
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Convolution of an image I by a kernel G is given by 
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Finally a threshold is used to determine the edges from 

 vuI , . The following briefly discusses the basic edge 

detection methods used for the experiment. 

A.  Roberts Cross Edge Detector 

Lawrence Roberts proposed an edge detector operator in 

1965 [13]. The operator used two 2 × 2 kernels to detect the 

intensity changes in the horizontal and vertical direction. The 

Roberts filter operator approximates the intensity gradient of 

the brightness using following two different kernels: 
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where, 
xG and 

yG are horizontal and vertical kernels.  

B. Prewitt Edge Detector 

Prewitt edge detector proposed by Judith M.S. Prewitt in 

1970 [14]. This operator includes two 3 × 3 kernels which 

are convolved with the original image to calculate the 

changes in the horizontal and vertical directions. Two kernels 

are: 
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C. Sobel Edge Detector 

Sobel operator consists of couple of 3 × 3 kernels like 

Prewitt. The kernels undergo a convolution with the image to 

calculate the approximations of horizontal and vertical 

derivative. 



   International Journal of Computer Sciences and Engineering                                     Vol.6(4), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        126 

























101

202

101

xG            















 



121

000

121

yG         (7) 

D. Marr-Hildreth Edge Detector 

Marr and Hildreth proposed an edge operator combined 

with Gaussian filter and Laplacian operator [15]. This 

gradient based operator uses the Laplacian to take the second 

derivative and thus called as Laplacian of Gaussian (LOG). 

This operator marked a pixel as an edge where the second 

derivative of the kernel is zero. Second derivative computed 

as: 
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The Gaussian filter can be defined as: 
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LOG operator is computed from 
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where, 𝜎 is the standard deviation. 

LOG having two steps are smooth the image using Gaussian 

filter and convolute the image using Laplace kernel. The 3× 

3 kernel defined as  
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E. Canny Edge Detector 

Canny edge detector is a well known edge detection 

algorithm in image processing which is derived from Marr- 
Hildreth [16]. This having some features such as well 

localized edge points, minimum spurious edge response and 

only one response to a single edge. Canny edge detection 

consists of four steps: Gaussian smoothing, gradient 

magnitude computing, non-maxima suppression, hysteresis 

thresholding. 

In step 1, Gaussian smoothing is used to remove the noise 

before taking the edge from an image. It has two dimensional 

kernel to convolute the image and thus reduces the noise. In 

step 2, Sobel filter with 3 × 3 kernel is used to compute the 

gradient magnitude of an image. Intensity changes in 

horizontal and vertical direction computed by the kernel 

using Eq. (7). Gradient magnitude (G) of edge for each pixel 

computed using Eq. (2). Third step detected the thin edges 

from an image and local maximum along with the gradient 

direction. Step four is used to detect the final edges based on 

two threshold values and categories the edges into strong 

edge, weak edge and non edge. Finally edge pixels 

determined from strong and weak edges.  

IV. PARALLEL EDGE DETECTION 

Essential needs for parallel implementation of edge detection 

algorithms are discussed. Edge detection is an independent 

process to each pixel and supports the parallelization using 

threads. This section discusses the parallel edge detection 

algorithms such as Roberts, Prewitt, Sobel, Marr- Hildreth 

and Canny. Generally, edge detection algorithms convolute 

the two kernels over the image in horizontal as well as 

vertical direction. Serial implementation this process takes a 

considerable time using CPU. Further, MR brain volumes 

contain numerous slices that required more time to 

implement the edge detection process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Block diagram of the proposed method for parallel edge detection using GPU 
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Parallel method creates the threads which are equal to 

number of voxel in the MR brain volume in order to compute 

the edge detection process using GPU CUDA. Edge of all 

pixels in an image as well as all the images in a volume 

could be computed simultaneously. The method effectively 

utilizes the hardware resources available in GPU. Parallel 

implementation mechanism of the proposed work for edge 

detection algorithms are given in this section. Block diagram 

of the parallel edge detection process is shown in figure 3. 

MRI volume is taken as the input which contains nearly 120 

brain images. The voxel intensity data are stored in the form 

of one dimensional array and transfer to the GPU memory 

using memcpy() function in CUDA programming. All the 

above processes are implemented in CPU and then start the 

device code for parallel execution and produce the results. 

Threads are simultaneously access the instructions in device 

code and called as single instruction multiple data (SIMD).  

Final results are copied back to the host for further 

processing. 

Device code contains kernel operation to compute edge 

pixel. The kernel helps the parallel threads to access each 

pixel and compute the edge value. Computed results are 

sending back to the CPU from GPU in order to construct the 

resultant image. Most common suggested number of threads 

per block is 256 [17]. Heterogeneous CPU and GPU 

implementation is more suitable for time complex algorithms 

[2]. The generalized algorithm for edge detection using GPU 

is explained below. Remaining part of this section discusses 

the parallel implementation details of each edge detection 

algorithms. 

Algorithm:- 1 Edge detection using GPU CUDA 

           

   Input: N input images, edge detection kernel (m × m),  

               number of images (N) and size of image (weight 

               and height) 

1. Create an array for input (IN) and output (H ,V) 

2. Store the image intensities to 1D array 

3. Allocate the memory in GPU 

4. Copy the data from host to device 

5. Calculate the number of blocks and threads  

6. Start the GPU execution 

7. i = threadIdx.x + blockDim.x * blockIdx.x; 

8. if  i > 0 and i < N*width*height do 

9.            compute the kernel operator 

10. end if 

11. Resultant intensity stored in H and V arrays 

12. Copy the data from device to host 

13. Construct the images 

Output: MRI volume with edges 

 

Thread can access the pixel intensity in parallel and compute 

the Roberts operator to detect the edges. Parallel 

implementation of Roberts edge detection broken down to 

three steps. First, input MR image intensity s stored in IN 

array and copy to the GPU video memory. Second, the 

computation is done using two 2 × 2 kernels and sum up the 

values of kernel operator to calculate the edges. Then the two 

kernels values in horizontal and vertical direction are stored 

in H and V array. Third, the resultant H and V arrays are 

transferred back to the CPU memory.  

A 2D separable filter can be divided into two 1D filter and 

that require m+n operations instead of m*n to produce each 

output pixel. Here m and n are the width and height of the 

kernel. If a kernel (G) is called separable, it can be broken 

down into convolution of two kernels: 
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Sobel and Prewitt operators are separable and Sobel kernel 

can be written as: 
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The separable filters with 3 × 3 kernel reduce the operations 

from O (mn) to O (m+n). Here six operations performed 

instead of nine and it will be effective if kernel size is 

increases.  

Prewitt and Sobel operator implemented using the separable 

concept in GPU. Therefore, the convolution is performed in 

the x direction first followed by the y direction. These two 

steps are carried out by a device code [18]. LOG doesn’t 

support the separable filter and implemented like Roberts 

operator. 

Two device codes used to implement the parallel canny edge 

detection. Parallel Canny used heterogeneous CPU and GPU 

implementation. Gaussian filter, non-maximum suppression 

and threshold detection process are implemented in CPU. 

Sobel operate convolute over an image in parallel using 

GPU. Finally resultant edge pixels are transferred back to the 

CPU memory for reconstructing the images. 

 

V. PARALLEL EDGE DETECTION 

The proposed implementation is similar to that offered by 

MATLAB and further translated the MATLAB function to 

C++ and implemented it in CUDA. Our multi-core CPU 

platform is a Pentium dual core, where each processor has 2 

cores working at 2.3 GHz. Our GPU platform is the NVIDIA 

Quadro K5000 developed under Kepler architecture. This 

platform includes 1536 streaming processors (SP) or cores 

distributed on 8 streaming multiprocessors (SM) as 192 SP 

per SM. Each core is working at 1.4 GHz, and 4GB. This 

GPU supports compute capability 3.0, 1024 threads per 
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block, 173 GB/s memory bandwidth, 3540 million transistors 

and 49152 registers per block.  

The materials used for this work is obtained from multimodal 

brain tumor segmentation (BraTS 2015) training datasets. 

The dataset contains 120 brain tumor images with the size of 

240 × 240 pixels. All the images in the dataset are skull 

stripped and resampled to isotropic 1mm × 1mm × 1mm 

resolution. The parallel method extracted the edges of given 

MR tumor volume. The result of edge detection algorithms 

on sample tumor image are given in figure 4. The resultant 

images showed the exact boundary of the tumor to assist the 

clinicians in diagnosis process. The speedup metrics used to 

measure the acceleration of parallel method in terms of folds 

(×). The speedup folds computed from the time difference 

taken between serial implementation and parallel 

implementation. In the time calculation, image read 

operations are not included in CPU and GPU 

implementation. 

 

   
GPUintionimplementaparalleloftimenComputatio

CPUintionimplementaserialoftimenComputatio
foldsSpeedup )(   (14) 

 

 

 

 

 

 

         
                                            (a)                                   (b)                                 (c) 

 

 

 

 

 

 
                                           (d)                                    (e)                                   (f) 
Figure 4 Results of edge detection algorithms on sample brain tumor image. (a) sample image (b) Roberts (c) Prewitt (d) Sobel (e) LOG (f) Canny 

 
Table 1. Computation time taken by the edge detection algorithms for various size of volumes in CPU 

Edge Detection 

Algorithms/ seconds  

Number of Images  

= 1 = 10 = 50 = 100 = 120 

Roberts 0.105213 0.131241 0.24390 0.44556 0.455213 

Prewitt 0.373870 0.425459 2.22890 4.38564 4.920487 

Prewitt Separable 0.136870 0.220459 0.67510 1.89984 2.676887 

Sobel 0.062857 0.418859 2.31260 4.27555 5.240987 

Sobel Separable 0.017987 0.202959 0.74320 1.48034 2.322987 

Marr-Hildreth 0.069557 0.329592 0.66910 1.09804 3.525287 

Canny 12.160857 124.98045 370.2135 817.67934 1119.646057 

 
Table 2. Computation time taken by the edge detection algorithms various size of volumes in GPU 

Edge Detection 

Algorithms/ seconds 

Number of Images Maximum 

Speedup 

(×) 
= 1 = 10 = 50 = 100 = 120 

Roberts 0.000498 0.003372 0.014762 0.030775 0.041963 11 

Prewitt 0.000729 0.004246 0.02211 0.053732 0.063942 77 

Prewitt Separable 0.000649 0.002139 0.01538 0.03432 0.0588 46 

Sobel 0.000431 0.002590 0.011677 0.041714 0.053394 98 

Sobel Separable 0.003251 0.005783 0.00943 0.0341 0.0483 48 

Marr-Hildreth 0.000641 0.003134 0.015313 0.029139 0.040742 87 

Canny 1.5309 3.528 8.3720 13.452 16.4529 68 
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The computation time taken by the parallel method on GPU 

and their maximum speedup folds are given in Table 2. The 

results showed that the computational time taken by the 

parallel methods in GPU almost saturated when handling 

more number of images and threads. Graph comparisons of 

each method with their parallel implementation are given in 

figure 5. 

Generally Roberts method has less computation with 2 × 2 

mask convolute to an image. The results showed that the 

parallel implementation of Roberts method accelerated up to 

11× speedup folds than the CPU implementation for 

detecting the edges of MRI volume. Prewitt operator with its 

3 × 3 kernel took more computation time than Roberts. The 

performance of Prewitt increased 77 × speedup folds in GPU 

implementation. Prewitt separable kernel reduces the 

computation in CPU as well as GPU and yielded 46× 

speedup folds than the serial implementation. Sobel and 

Sobel separable kernel accelerate the computation time for 

MRI volume upto 98× and 48 × speedup folds respectively. 

Marr-Hildreth edge detection yielded 87× speedup folds than 

CPU. 

 

Figure 5. Computation time of Serial and Parallel implementation of edge 

detection algorithms in CPU and GPU 

Graph comparison of Canny edge detection on CPU and 

GPU as shown in figure 6. Canny edge detector yields 87× 

and 68× speedup folds computational gain in GPU. 

Convolute the sobel kernel over the image only done in 

parallel implementation for Canny edge detection and 

remaining steps are implemented in CPU. Due to the 

bandwidth limitation of GPU, data transfer between CPU and 

GPU takes considerable time in computation. Finally the 

parallel implementation of this work achieved speed up 

execution by 98 × compared to the CPU based 

implementation. 

 

 

 

 

 

 
 

Figure 6. Graph comparison of Canny edge detection for varying size of 

volumes on CPU and GPU 

VI. CONCLUSION AND FUTURE SCOPE 

In this work, edge detection algorithms are described 

and implemented using MATLAB and CUDA platforms for 

MRI brain volumes. Five popular basic edge detection 

methods are presented and analyzed along with the possible 

optimization in CPU using separable kernel. The comparison 

of results obtained by these algorithms running in GPU 

CUDA achieved 98× speed folds than the CPU based 

implementation. The experimental results indicate parallel 

implementation of edge detector definitely yields high 

performance enhancement in medical images. In future, the 

proposed parallel methods will be tested in other general 

image based applications such as object identification, gait 

analysis, etc.  
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