
 © 2018, IJCSE All Rights Reserved 123

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol-6, Special Issue-4, May 2018 E-ISSN: 2347-2693

Parallel Processing Edge Detection Methods for MR Imagery Volumes

using CUDA Enabled GPU Machine

P. Sriramakrishnan

1
, T. Kalaiselvi

2
* and K. Somasundaram

3

1,2,3

Dept. of CSA, The Gandhigram Rural Institute (Deemed to be University) Gandhigram, Tamil Nadu, India.

*Corresponding Author: kalaiselvi.gri@gmail.com, Tel.: 9486362843

Available online at: www.ijcseonline.org

Abstract— Many algorithms in the field of image processing support high degree of inherent parallelism. Edge detection is one

of the most important processes in medical image processing. Edge detection is an independent process to support parallel

computation of each pixel intensity changes by their neighbourhood pixels. Magnetic resonance imaging (MRI) scanner

provides stack of 2D slices with millions of pixels and thus require much time for edge detection process in central processing

unit (CPU) systems. In the proposed work, graphics processing unit (GPU) based parallel edge detection methods are

developed for MRI volume using compute unified device architecture (CUDA). Each pixel operation in edge detection is

independent and thus GPU provides high level data parallelism using threads per voxel method. Basic edge detection operators

such as Roberts, Prewitt, Sobel, Marr- Hildreth and Canny are used in this experiment. The computational time of parallel

GPU-CUDA based methods were compared with the serial CPU implementation. Results showed that parallel implementation

is about 11× to 98× times faster than the serial CPU implementation.

Keywords— Edge detection, GPU, CUDA, Roberts, Prewitt; Sobel, Marr- Hildreth, Canny.

I. INTRODUCTION

Magnetic resonance imaging (MRI) provides the huge

amount of data about the soft tissue characteristics of human

body that helps to improve the diagnosis more accurate and

reliable than other imaging modalities [1]. Manual diagnosis

of MR images is a time consuming and painstaking task to

the clinician due to large number of 2D slices produced by

the MRI scanner [2]. In recent years, rapid development of

semiconductor results the integration of much transistors in a

single unit and named as GPU in order to solve the

computational problems. GPU programming is a new

technique to improve the speed and quality of the medical

image applications [3]. CUDA is a platform for GPU

programming to obtain data parallelism using single

instruction multiple threads (SIMT) concept.

Edge detection is a pre and post processing technique for

extracting features for classification, object segmentation and

visualization in medical image processing [4]. Edge detection

is an independent process to each pixel and computed from

intensity changes of its neighborhood pixels. Edge detection

in MRI volume is an expensive process in CPU. To reduce

the computational time, we proposed parallel edge detection

methods for MRI volume using CUDA.

Currently, several parallel algorithms were developed for

edge detection using GPU-CUDA. Gong and Hao

implemented a parallel edge detector for Roberts operator

using GPU [5]. The experiment showed that the method

given ten times faster than traditional Roberts edge detector

implemented in CPU. Jain et al., proposed a method parallel

for Sobel operator [6]. They achieved the speed gain upto

262× – 943× for two kernel functions and 120× – 455× for

three kernel functions. Hossain et al. developed a parallel

method for sobel edge detector using NVIDIA GTX 550Ti

GPU [7]. The computation time of the parallel method was

compared with convention CPU time and accelerated upto

4×.

Ogawa et al., proposed a efficient implementation of Canny

edge detection on GPU using CUDA [8]. The experimental

results showed that the implementation of parallel Canny

edge detection achieved 61× faster than the serial

implementation in CPU. Cheikh et al. implemented a parallel

Canny edge detector in multi-core CPU and many-core GPU

using the matrix laboratory (MATLAB), C++, Open Multi-

Processing (OpenMP) and CUDA [9]. The parallel method

reduced the computational time upto 33×. Emrani et al.,

developed a parallel method for various edge detection

techniques using CUDA, open source computer vision

(OpenCV), and MATLAB [10]. The comparison of results

showed that the parallel Canny method on GPU using the

CUDA platform given 2× – 100× speeder than CPU based

implementation using the OpenCV and MATLAB platforms.

This paper proposed parallel edge detection methods for 3D

MR volumes using GPU-CUDA computing. In edge

detection process, pixel operations are independent from

each other and GPU can provide high level of data

mailto:kalaiselvi.gri@gmail.com

 International Journal of Computer Sciences and Engineering Vol.6(4), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 124

parallelism using threads per voxel. The popular basic edge

detectors such as Roberts, Prewitt, Sobel, Marr- Hildreth and

Canny are used in this experiment. NVIDIA Quadro K5000

GPU has Kepler architecture used to implement these

parallel edge detection methods. The computational time of

parallel methods were compared with the serial

implementation using speedup folds metrics (×).

The rest of this paper is organized as follows; Section II

presents the introduction about GPU programming and

CUDA computing. Section III describes the traditional edge

detection methods; Section IV reports parallel

implementation of edge detectors; Section V discusses the

results of this experiment; Finally, section VI concludes the

paper.

II. GPU-CUDA

GPU has massively parallel computing architecture that

connected to CPU and completely separated from

motherboard. GPU architecture includes M number of

streaming multiprocessors (SM), N number of co-processor

per SM, ALU's, control units and various types of memories

to support data parallelism [11]. NVIDIA introduced its own

GPU programming language called CUDA in 2006. CUDA

is an extension of the C programming and executed in either

host (CPU) or device (GPU) with their memory support.

Host code does not support data parallelism and device code

exhibit rich amount of data parallelism.

Programming architecture of GPU – CUDA is shown in

figure 1. CUDA is capable to execute large amount of

parallel threads and the threads are organized into grids and

thread blocks. Device code executes the thread into two level

of parallelism which includes parallel block in grid and

parallel thread in the block. Each block (blockIdx) and thread

(threadIdx) has a unique ID. The total number of threads in a

block is 1024.

Figure 2 shows the memory architecture of GPU – CUDA.

GPU memories are register memory, local memory, shared

memory, global memory, constant memory and texture

memory [12]. Threads have their own limited register and

local memory. Frequently accessed variables are stored in

registers. Every block has its own shared memory of size 16

KB or 48KB and all threads in a block can access the shared

memory. Constant memory is a read only memory that can

be accessed by all threads in a grid. Texture memory is used

in visualization process and the size is 32 KB per

multiprocessor. Global memory is a largest memory that

provides read and write access to all threads. The global

memory supports transfer the data to and from the device for

computation.

Figure 1. Programming architecture of GPU- CUDA

 International Journal of Computer Sciences and Engineering Vol.6(4), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 125

Figure 2. Memory architecture of GPU-CUDA

III. EDGE DETECTION METHODS

Edges are the set of connected pixels occurs at the boundary

between two different regions of an image. Edge detection

always demands in the field of object identification, feature

extraction and classification. Edges can be obtained using

first order derivatives or gradient and mathematically defined

as follows:

 

   
j

jiI
j

i

jiI
ijiI











,ˆ,ˆ,
 (1)

where,  jiI , be the input image,

 
i

jiI



 , is the

gradient  iG in the horizontal direction and  
j

jiI



 , is the

gradient  jG in the vertical direction.

The gradient magnitude and direction can be defined as:

22|| ji GGG 

 (2)











 

i

j

G

G
1tan (3)

Convolution of an image I by a kernel G is given by

      
 





HRji

jiGivvuIuvI
,

,.,, (4)

Finally a threshold is used to determine the edges from

 vuI , . The following briefly discusses the basic edge

detection methods used for the experiment.

A. Roberts Cross Edge Detector

Lawrence Roberts proposed an edge detector operator in

1965 [13]. The operator used two 2 × 2 kernels to detect the

intensity changes in the horizontal and vertical direction. The

Roberts filter operator approximates the intensity gradient of

the brightness using following two different kernels:

 











10

01
xG 












01

10
yG (5)

where,
xG and

yG are horizontal and vertical kernels.

B. Prewitt Edge Detector

Prewitt edge detector proposed by Judith M.S. Prewitt in

1970 [14]. This operator includes two 3 × 3 kernels which

are convolved with the original image to calculate the

changes in the horizontal and vertical directions. Two kernels

are:

























101

101

101

xG















 



111

000

111

yG (6)

C. Sobel Edge Detector

Sobel operator consists of couple of 3 × 3 kernels like

Prewitt. The kernels undergo a convolution with the image to

calculate the approximations of horizontal and vertical

derivative.

 International Journal of Computer Sciences and Engineering Vol.6(4), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 126

























101

202

101

xG















 



121

000

121

yG (7)

D. Marr-Hildreth Edge Detector

Marr and Hildreth proposed an edge operator combined

with Gaussian filter and Laplacian operator [15]. This

gradient based operator uses the Laplacian to take the second

derivative and thus called as Laplacian of Gaussian (LOG).

This operator marked a pixel as an edge where the second

derivative of the kernel is zero. Second derivative computed

as:

      jiI
j

jiI
i

jiI ,,,
2

2

2

2
2









 (8)

The Gaussian filter can be defined as:

   






 


2

22

2 2
exp

2

1
,



ji
jiG (9)

LOG operator is computed from

    jiG
j

jiG
i

LOG ,,
2

2

2

2









 (10)

where, 𝜎 is the standard deviation.

LOG having two steps are smooth the image using Gaussian

filter and convolute the image using Laplace kernel. The 3×

3 kernel defined as

























111

181

111

G (11)

E. Canny Edge Detector

Canny edge detector is a well known edge detection

algorithm in image processing which is derived from Marr-
Hildreth [16]. This having some features such as well

localized edge points, minimum spurious edge response and

only one response to a single edge. Canny edge detection

consists of four steps: Gaussian smoothing, gradient

magnitude computing, non-maxima suppression, hysteresis

thresholding.

In step 1, Gaussian smoothing is used to remove the noise

before taking the edge from an image. It has two dimensional

kernel to convolute the image and thus reduces the noise. In

step 2, Sobel filter with 3 × 3 kernel is used to compute the

gradient magnitude of an image. Intensity changes in

horizontal and vertical direction computed by the kernel

using Eq. (7). Gradient magnitude (G) of edge for each pixel

computed using Eq. (2). Third step detected the thin edges

from an image and local maximum along with the gradient

direction. Step four is used to detect the final edges based on

two threshold values and categories the edges into strong

edge, weak edge and non edge. Finally edge pixels

determined from strong and weak edges.

IV. PARALLEL EDGE DETECTION

Essential needs for parallel implementation of edge detection

algorithms are discussed. Edge detection is an independent

process to each pixel and supports the parallelization using

threads. This section discusses the parallel edge detection

algorithms such as Roberts, Prewitt, Sobel, Marr- Hildreth

and Canny. Generally, edge detection algorithms convolute

the two kernels over the image in horizontal as well as

vertical direction. Serial implementation this process takes a

considerable time using CPU. Further, MR brain volumes

contain numerous slices that required more time to

implement the edge detection process.

Figure 3. Block diagram of the proposed method for parallel edge detection using GPU

 International Journal of Computer Sciences and Engineering Vol.6(4), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 127

Parallel method creates the threads which are equal to

number of voxel in the MR brain volume in order to compute

the edge detection process using GPU CUDA. Edge of all

pixels in an image as well as all the images in a volume

could be computed simultaneously. The method effectively

utilizes the hardware resources available in GPU. Parallel

implementation mechanism of the proposed work for edge

detection algorithms are given in this section. Block diagram

of the parallel edge detection process is shown in figure 3.

MRI volume is taken as the input which contains nearly 120

brain images. The voxel intensity data are stored in the form

of one dimensional array and transfer to the GPU memory

using memcpy() function in CUDA programming. All the

above processes are implemented in CPU and then start the

device code for parallel execution and produce the results.

Threads are simultaneously access the instructions in device

code and called as single instruction multiple data (SIMD).

Final results are copied back to the host for further

processing.

Device code contains kernel operation to compute edge

pixel. The kernel helps the parallel threads to access each

pixel and compute the edge value. Computed results are

sending back to the CPU from GPU in order to construct the

resultant image. Most common suggested number of threads

per block is 256 [17]. Heterogeneous CPU and GPU

implementation is more suitable for time complex algorithms

[2]. The generalized algorithm for edge detection using GPU

is explained below. Remaining part of this section discusses

the parallel implementation details of each edge detection

algorithms.

Algorithm:- 1 Edge detection using GPU CUDA

 Input: N input images, edge detection kernel (m × m),

 number of images (N) and size of image (weight

 and height)

1. Create an array for input (IN) and output (H ,V)

2. Store the image intensities to 1D array

3. Allocate the memory in GPU

4. Copy the data from host to device

5. Calculate the number of blocks and threads

6. Start the GPU execution

7. i = threadIdx.x + blockDim.x * blockIdx.x;

8. if i > 0 and i < N*width*height do

9. compute the kernel operator

10. end if

11. Resultant intensity stored in H and V arrays

12. Copy the data from device to host

13. Construct the images

Output: MRI volume with edges

Thread can access the pixel intensity in parallel and compute

the Roberts operator to detect the edges. Parallel

implementation of Roberts edge detection broken down to

three steps. First, input MR image intensity s stored in IN

array and copy to the GPU video memory. Second, the

computation is done using two 2 × 2 kernels and sum up the

values of kernel operator to calculate the edges. Then the two

kernels values in horizontal and vertical direction are stored

in H and V array. Third, the resultant H and V arrays are

transferred back to the CPU memory.

A 2D separable filter can be divided into two 1D filter and

that require m+n operations instead of m*n to produce each

output pixel. Here m and n are the width and height of the

kernel. If a kernel (G) is called separable, it can be broken

down into convolution of two kernels:

 21 *GGG
 (12)

Sobel and Prewitt operators are separable and Sobel kernel

can be written as:

  101*

1

2

1

101

202

101

















































xG (13)

The separable filters with 3 × 3 kernel reduce the operations

from O (mn) to O (m+n). Here six operations performed

instead of nine and it will be effective if kernel size is

increases.

Prewitt and Sobel operator implemented using the separable

concept in GPU. Therefore, the convolution is performed in

the x direction first followed by the y direction. These two

steps are carried out by a device code [18]. LOG doesn’t

support the separable filter and implemented like Roberts

operator.

Two device codes used to implement the parallel canny edge

detection. Parallel Canny used heterogeneous CPU and GPU

implementation. Gaussian filter, non-maximum suppression

and threshold detection process are implemented in CPU.

Sobel operate convolute over an image in parallel using

GPU. Finally resultant edge pixels are transferred back to the

CPU memory for reconstructing the images.

V. PARALLEL EDGE DETECTION

The proposed implementation is similar to that offered by

MATLAB and further translated the MATLAB function to

C++ and implemented it in CUDA. Our multi-core CPU

platform is a Pentium dual core, where each processor has 2

cores working at 2.3 GHz. Our GPU platform is the NVIDIA

Quadro K5000 developed under Kepler architecture. This

platform includes 1536 streaming processors (SP) or cores

distributed on 8 streaming multiprocessors (SM) as 192 SP

per SM. Each core is working at 1.4 GHz, and 4GB. This

GPU supports compute capability 3.0, 1024 threads per

 International Journal of Computer Sciences and Engineering Vol.6(4), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 128

block, 173 GB/s memory bandwidth, 3540 million transistors

and 49152 registers per block.

The materials used for this work is obtained from multimodal

brain tumor segmentation (BraTS 2015) training datasets.

The dataset contains 120 brain tumor images with the size of

240 × 240 pixels. All the images in the dataset are skull

stripped and resampled to isotropic 1mm × 1mm × 1mm

resolution. The parallel method extracted the edges of given

MR tumor volume. The result of edge detection algorithms

on sample tumor image are given in figure 4. The resultant

images showed the exact boundary of the tumor to assist the

clinicians in diagnosis process. The speedup metrics used to

measure the acceleration of parallel method in terms of folds

(×). The speedup folds computed from the time difference

taken between serial implementation and parallel

implementation. In the time calculation, image read

operations are not included in CPU and GPU

implementation.

GPUintionimplementaparalleloftimenComputatio

CPUintionimplementaserialoftimenComputatio
foldsSpeedup )((14)

 (a) (b) (c)

 (d) (e) (f)
Figure 4 Results of edge detection algorithms on sample brain tumor image. (a) sample image (b) Roberts (c) Prewitt (d) Sobel (e) LOG (f) Canny

Table 1. Computation time taken by the edge detection algorithms for various size of volumes in CPU

Edge Detection

Algorithms/ seconds

Number of Images

= 1 = 10 = 50 = 100 = 120

Roberts 0.105213 0.131241 0.24390 0.44556 0.455213

Prewitt 0.373870 0.425459 2.22890 4.38564 4.920487

Prewitt Separable 0.136870 0.220459 0.67510 1.89984 2.676887

Sobel 0.062857 0.418859 2.31260 4.27555 5.240987

Sobel Separable 0.017987 0.202959 0.74320 1.48034 2.322987

Marr-Hildreth 0.069557 0.329592 0.66910 1.09804 3.525287

Canny 12.160857 124.98045 370.2135 817.67934 1119.646057

Table 2. Computation time taken by the edge detection algorithms various size of volumes in GPU

Edge Detection

Algorithms/ seconds

Number of Images Maximum

Speedup

(×)
= 1 = 10 = 50 = 100 = 120

Roberts 0.000498 0.003372 0.014762 0.030775 0.041963 11

Prewitt 0.000729 0.004246 0.02211 0.053732 0.063942 77

Prewitt Separable 0.000649 0.002139 0.01538 0.03432 0.0588 46

Sobel 0.000431 0.002590 0.011677 0.041714 0.053394 98

Sobel Separable 0.003251 0.005783 0.00943 0.0341 0.0483 48

Marr-Hildreth 0.000641 0.003134 0.015313 0.029139 0.040742 87

Canny 1.5309 3.528 8.3720 13.452 16.4529 68

 International Journal of Computer Sciences and Engineering Vol.6(4), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 129

The computation time taken by the parallel method on GPU

and their maximum speedup folds are given in Table 2. The

results showed that the computational time taken by the

parallel methods in GPU almost saturated when handling

more number of images and threads. Graph comparisons of

each method with their parallel implementation are given in

figure 5.

Generally Roberts method has less computation with 2 × 2

mask convolute to an image. The results showed that the

parallel implementation of Roberts method accelerated up to

11× speedup folds than the CPU implementation for

detecting the edges of MRI volume. Prewitt operator with its

3 × 3 kernel took more computation time than Roberts. The

performance of Prewitt increased 77 × speedup folds in GPU

implementation. Prewitt separable kernel reduces the

computation in CPU as well as GPU and yielded 46×

speedup folds than the serial implementation. Sobel and

Sobel separable kernel accelerate the computation time for

MRI volume upto 98× and 48 × speedup folds respectively.

Marr-Hildreth edge detection yielded 87× speedup folds than

CPU.

Figure 5. Computation time of Serial and Parallel implementation of edge

detection algorithms in CPU and GPU

Graph comparison of Canny edge detection on CPU and

GPU as shown in figure 6. Canny edge detector yields 87×

and 68× speedup folds computational gain in GPU.

Convolute the sobel kernel over the image only done in

parallel implementation for Canny edge detection and

remaining steps are implemented in CPU. Due to the

bandwidth limitation of GPU, data transfer between CPU and

GPU takes considerable time in computation. Finally the

parallel implementation of this work achieved speed up

execution by 98 × compared to the CPU based

implementation.

Figure 6. Graph comparison of Canny edge detection for varying size of

volumes on CPU and GPU

VI. CONCLUSION AND FUTURE SCOPE

In this work, edge detection algorithms are described

and implemented using MATLAB and CUDA platforms for

MRI brain volumes. Five popular basic edge detection

methods are presented and analyzed along with the possible

optimization in CPU using separable kernel. The comparison

of results obtained by these algorithms running in GPU

CUDA achieved 98× speed folds than the CPU based

implementation. The experimental results indicate parallel

implementation of edge detector definitely yields high

performance enhancement in medical images. In future, the

proposed parallel methods will be tested in other general

image based applications such as object identification, gait

analysis, etc.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of NVIDIA

Corporation Private Ltd., USA with the donation of the

QUADRO K5000 GPU used for this research.

REFERENCES

[1] J.L. Prince, J.M. Links, “Medical Imaging Signals and Systems”,

Pearson Prentice Hall, 2nd Edition, 2014.

[2] D. Kirk, W. Hwu, “Programming Massively Parallel Processors -

A Hands-on Approach”, 3
rd

 Edition, pp. 1-514, 2016.

[3] T.Kalaiselvi, P. Sriramakrishnan, “Rapid brain tissue

segmentation process by modified FCM algorithm with CUDA

enabled GPU machine”, International Journal of Imaging System

and Technology, pp. 1–12, 2018. DOI: 10.1002/ima.22267

[4] M. Chouchene, F.E. Sayadi, Y. Said, M. Atri, R. Tourki, “Efficient

implementation of Sobel edge detection algorithm on CPU, GPU

and FPGA”, International Journal of Advanced Media and

Communication, Vol. 5, No. 2, pp. 105-117, 2014.

 International Journal of Computer Sciences and Engineering Vol.6(4), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 130

[5] H.X. Gong, L Hao, “Roberts edge detection algorithm based on

GPU”, Journal of Chemical and Pharmaceutical Research, Vol. 6,

No. 7, pp. 1308-1314, 2014

[6] A. Jain, A. Namdev, M. Chawla, “Parallel Edge Detection By

Sobel Algorithm Using CUDA C”, In the proceedings of the

International Conference on Electrical, Electronics and Computer

Science, India, pp. 1-6, 2016.

[7] M. Kossain, M.A. Ashique, M.A. Ibtehaz, J. Uddin, “Parallel

Edge Detection using Sobel Algorithm with Contract-time Anytime

Algorithm in CUDA”, Proceedings of the International Conference

on Parallel and Distributed Processing Techniques and

Applications (PDPTA), CSREA Press, pp. 130-135, 2016

[8] K. Ogawa, Y. Ito, K. Nakano, “Efficient Canny edge detection

using a GPU”, In the proceedings of First International

Conference on Networking and Computing (ICNC), Japan, pp.

279-280, 2010.

[9] T.L.B. Cheikh, G. Beltrame, G. Nicolescu, F. Cheriet, S. Tahar,

“Parallelization strategies of the canny edge detector for multi-

core CPUs and many-core GPUs”, In the Proceedings of the

International on New Circuits and Systems Conference

(NEWCAS), Canada, pp. 49-52, 2012.

[10] Z. Emrani, S. Bateni, H. Rabbani, “A New Parallel Approach for

Accelerating the GPU-Based Execution of Edge Detection

Algorithms”, Journal of medical signals and sensors, Vol. 7, No. 1,

pp. 33-42, 2017.

[11] T. Kalaiselvi, P. Sriramakrishnan, K. Somasundaram, “Survey of

using GPU CUDA programming model in medical image

analysis”, Informatics in Medicine Unlocked, Vol. 9, pp. 133 –

144, 2017

[12] F. Rob, CUDA application design and development, 1
st
 Ed.

Elsevier, pp. 1–336, 2011.

[13] L. Roberts, J. Tippet, “Machine Perception of Three Dimensional

Solids”, Optical and Electro-Optical Information Processing,

Cambridge, MA: IT Press; 1965.

[14] J.M. Prewitt, “Object Enhancement and Extraction”, Vol. 75,

New York, Academic Press 1970.

[15] D. Marr, E. Hildreth, “Theory of Edge Detection”, Proceedings of

the Royal Society of London, Series B, Biological Sciences, Vol.

207, No. 1167, pp. 187–217, 1980.

[16] J.F. Canny, “A computation approach to edge detection”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 8,

No. 6, pp. 769-798, 1986.

[17] S. Cuomo, P.D. Michele, F. Piccialli, “3D data denoising via

nonlocal means filter by using parallel GPU strategies”,

Computational Mathematical Methods in Medicine, pp. 1–14,

2014.

[18] V. Podlozhnyuk, “Image convolution with CUDA”, 2007.

Authors Profile

Sriramakrishnan P. is a Research Scholar (Full-time) in
the Department of Computer Science and Applications,

Gandhigram Rural Institute - Deemed University,

Dindigul, India. He received his Bachelor of Science
(B.Sc.) degree in 2011 from Bharathidasan University,

Trichy, Tamilnadu, India. He received Master of
Computer Applications (M.C.A) degree in 2014 from

The Gandhigram Rural Institute- Deemed University,

Dindigul, Tamilnadu, India. He worked as Software Engineer in the Dhvani
Research and Development Pvt. Ltd, Indian Institute of Technology Madras

Research Park, Chennai during January 2014 – March 2015. He is currently

pursuing Ph.D. degree in The Gandhigram Rural Institute - Deemed
University. His research focuses on Medical Image Processing and Parallel

Computing. He has qualified UGC-NET for lectureship in June 2015.

Kalaiselvi T. is currently working as an Assistant

Professor in Department of Computer Science and

Applications, The Gandhigram Rural Institute, Dindigul,

Tamilnadu, India. She received her Bachelor of Science

(B.Sc) degree in Mathematics and Physics in 1994 &
Master of Computer Applications (M.C.A) degree in

1997 from Avinashilingam University, Coimbatore,

Tamilnadu, India. She received her Ph.D degree from The
Gandhigram Rural University in February 2010. She has completed a DST

sponsored project under Young Scientist Scheme. She was a PDF in the

same department during 2010-2011. An Android based application
developed based on her research work has won First Position in National

Student Research Convention, ANVESHAN-2013, organized by

Association of Indian Universities (AUI), New Delhi, under Health Sciences
Category. Her research focuses on MRI of human Brain Image Analysis to

enrich the Computer Aided Diagnostic process, Telemedicine and

Teleradiology Technologies.

Somasundaram K. received his Master of Science

(M. Sc) degree in Physics from the University of

Madras, Chennai, India in 1976, the Post Graduate

Diploma in Computer Methods from Madurai

Kamaraj University, Madurai, India in 1989 and the
Ph.D degree in theoretical Physics from Indian

Institute of Science, Bangalore, India in 1984. He is

presently working as Professor at the Department of
Computer Science and Applications, Gandhigram Rural Institute, Dindigul,

India. He was senior Research Fellow of Council Scientific and Industrial

Research (CSIR) Govt. of India, in 1983. He was previously a Researcher at
the International Centre for Theoretical Physics, Trieste, Italy and

Development Fellow of Commonwealth Universities, at Edith Cowan

University, Perth, Australia. His research interests are image processing,
image compression and medical imaging. He is also a member of IEEE

USA.

