Open Access   Article Go Back

Contrasting and Evaluating Different Clustering Algorithms: A Literature Review

S. Joshi1 , F.U. Khan2 , N. Thakur3

Section:Review Paper, Product Type: Journal Paper
Volume-2 , Issue-4 , Page no. 87-91, Apr-2014

Online published on Apr 30, 2014

Copyright © S. Joshi, F.U. Khan, N. Thakur . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: S. Joshi, F.U. Khan, N. Thakur, “Contrasting and Evaluating Different Clustering Algorithms: A Literature Review,” International Journal of Computer Sciences and Engineering, Vol.2, Issue.4, pp.87-91, 2014.

MLA Style Citation: S. Joshi, F.U. Khan, N. Thakur "Contrasting and Evaluating Different Clustering Algorithms: A Literature Review." International Journal of Computer Sciences and Engineering 2.4 (2014): 87-91.

APA Style Citation: S. Joshi, F.U. Khan, N. Thakur, (2014). Contrasting and Evaluating Different Clustering Algorithms: A Literature Review. International Journal of Computer Sciences and Engineering, 2(4), 87-91.

BibTex Style Citation:
@article{Joshi_2014,
author = {S. Joshi, F.U. Khan, N. Thakur},
title = {Contrasting and Evaluating Different Clustering Algorithms: A Literature Review},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {4 2014},
volume = {2},
Issue = {4},
month = {4},
year = {2014},
issn = {2347-2693},
pages = {87-91},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=114},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=114
TI - Contrasting and Evaluating Different Clustering Algorithms: A Literature Review
T2 - International Journal of Computer Sciences and Engineering
AU - S. Joshi, F.U. Khan, N. Thakur
PY - 2014
DA - 2014/04/30
PB - IJCSE, Indore, INDIA
SP - 87-91
IS - 4
VL - 2
SN - 2347-2693
ER -

VIEWS PDF XML
3641 3433 downloads 3686 downloads
  
  
           

Abstract

Clustering is a practice of splitting data into set of analogous objects; these sets are identified as clusters. Each cluster comprised of points that are alike among them and unalike compared to points of other cluster. This paper is being set to study and put side by side different data clustering algorithms. The algorithms under exploration are: k-means algorithm, hierarchical clustering algorithm, k-medoids algorithm, and density based algorithms. All these algorithms are analyzed on R-tool by taking same data-set under observation.

Key-Words / Index Term

Clustering, K-Means Algorithm, Hierarchical Clustering Algorithm, K-Medoids Algorithm, Density Based Algorithm

References

[1]. Caiming Zhong ,Duoqian Miao,� Minimum spanning tree based split-and-merge: A hierarchical clustering method�, Journal of Information Sciences, Volume 181 Issue 16,August 2011, Elsevier ScienceInc.New York,USA,pages:3397-3410.
[2]. E. Mooi and M. Sarstedt, �A Concise Guide to Market Research�,DOI 10.1007/978-3-642-12541-6_9,Springer-Verlag Berlin Heidelberg 2011.
[3]. Xindong Wu � Vipin Kumar � J. Ross Quinlan,� Top 10 algorithms in data mining�, International Conference on Data Mining (ICDM) in December 2006.
[4]. A. K. Jain and R. C. Dubes. �Algorithms for Clustering Data.� Prentice-Hall, Englewood Cliffs, NJ, 1988.
[5]. L. Kaufman and P.J. Rousseeuw. �Finding Groups in Data: An Introduction to Cluster Analysis.� Wiley, New York, 1990.
[6]. S.Anitha Elavarasi and Dr. J. Akilandeswari and Dr. B. Sathiyabhama, January 2011, A Survey On Partition Clustering Algorithms.
[7]. F. Murtagh. A survey of recent advances in hierarchical clustering algorithms.Computer Journal, 26(4):354�359, 1983.
[8]. W. Day and H. Edelsbrunner., �Efficient algorithms for agglomerative hierarchical clustering methods�. Journal of Classification, 1(7):7�24, 1984.
[9]. S. Guha, R. Rastogi, and K. Shim, 1998. CURE: An Efficient Clustering Algorithm for Large Databases. Proc. ACM Int�l Conf. Management of Data : 73-84.
[10]. J. Hartigan and M. Wong. Algorithm as136: A k-means clustering algorithm. Applied Statistics, 28:100�108, 1979.
[11]. Kilian Stoffel and Abdelkader Belkoniene �Parallel k/h-Means Clustering for Large Data Sets�, P. Amestoy et al. (Eds.): Euro-Par`99, LNCS 1685, pp. 1451{1454, 1999.c Springer-Verlag.
[12]. Zha, H., Ding, C., Gu, M., He, X., & Simon, H. (2002)�Spectral relaxation for K-means clustering.� Advances in Neural Information Processing Systems 14 (NIPS�01),1057�1064.
[13]. Raymond T. Ng and Jiawei Han.,� CLARANS: A Method for Clustering Objects for Spatial Data Mining. �IEEE Transactions on Knowledge and Data Engineering, 14(5):1003{1016, 2002.
[14]. L. Kaufman and P. J. Rousseeuw. �Finding Groups in Data: an Introduction to Cluster Analysis�. John Wiley & Sons,1990
[15]. R. T. Ng and J. Han. ,�Efficient and Effective clustering methods for spatial Data Mining�, Proc. of the 20th Int�l Conf.on Very Large Databases, Santiago, Chile, pages 144�155,1994.
[16]. D.Napoleon , P.Ganga Lakshmi,� An Enhanced k-means algorithm to improve the Efficiency Using Normal Distribution Data Points �,(IJCSE) International Journal on Computer Science and Engineering Vol. 02, No. 07, 2010, 2409-2413.