A Novel Method for Counterfeit Banknote Detection
R. Bhavani1 , A. Karthikeyan2
Section:Research Paper, Product Type: Journal Paper
Volume-2 ,
Issue-4 , Page no. 165-167, Apr-2014
Online published on Apr 30, 2014
Copyright © R. Bhavani, A. Karthikeyan . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: R. Bhavani, A. Karthikeyan, “A Novel Method for Counterfeit Banknote Detection,” International Journal of Computer Sciences and Engineering, Vol.2, Issue.4, pp.165-167, 2014.
MLA Style Citation: R. Bhavani, A. Karthikeyan "A Novel Method for Counterfeit Banknote Detection." International Journal of Computer Sciences and Engineering 2.4 (2014): 165-167.
APA Style Citation: R. Bhavani, A. Karthikeyan, (2014). A Novel Method for Counterfeit Banknote Detection. International Journal of Computer Sciences and Engineering, 2(4), 165-167.
BibTex Style Citation:
@article{Bhavani_2014,
author = {R. Bhavani, A. Karthikeyan},
title = {A Novel Method for Counterfeit Banknote Detection},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {4 2014},
volume = {2},
Issue = {4},
month = {4},
year = {2014},
issn = {2347-2693},
pages = {165-167},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=130},
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=130
TI - A Novel Method for Counterfeit Banknote Detection
T2 - International Journal of Computer Sciences and Engineering
AU - R. Bhavani, A. Karthikeyan
PY - 2014
DA - 2014/04/30
PB - IJCSE, Indore, INDIA
SP - 165-167
IS - 4
VL - 2
SN - 2347-2693
ER -
VIEWS | XML | |
3539 | 3405 downloads | 3528 downloads |
Abstract
The objective of this work is to detect counterfeit banknotes using image pattern classification techniques. The color scanner makes it easier to produce counterfeit banknotes. So it is important to find an efficient method to detect counterfeit banknotes. In this work, a method for automated banknote authentication is proposed, which segments the whole banknote into many regions, and then builds individual classifiers on each region. Firstly, the banknote is segmented into different number of partitions. Then the luminance histogram and texture features are extracted from each partition of the banknote. The features extracted from each partition are then used to classify the banknotes using multiple support vector machines. The result is whether the currency is genuine or counterfeit.
Key-Words / Index Term
Support Vector Machine, Counterfeit Banknote, Luminance Histogram, Texture Features
References
[1] F. Takeda, T. Nishikage, S. Omatu, �Banknote recognition by means of optimized masks, neural networks and genetic algorithms�, Engineering Applications of Artificial Intelligence 12 (2), 175�184, 1999.
[2] A. Frosini, M. Gori, P. Priami, �A neural network-based model for paper currency recognition and verification�, IEEE Transactions on Neural Networks 7 (6), 1482�1490,1996.
[3] C. He, M. Girolami, G. Ross, �Employing optimized combinations of one-class classifiers for automated currency validation�, Pattern Recognition 37 (6), 1085�1096, 2004.
[4] M. Ionescu, A. Ralusce, �Fuzzy hamming distance based banknote validator�, in: Proceedings of the 14th IEEE International Conference on Fuzzy Systems, pp. 300�305, 2005.
[5] C. Cortes, V. Vapnik, �Support-vector network�, Machine Learning 20 (3), 273�297, 1995.
[6] M. Pontil, A. �Verri, Support vector machines for 3D object recognition�, IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (6), 637�646, 1998.
[7] H. Drucker, D. Wu, V. Vapnik, �Support vector machines for spam categorization�, IEEE Transactions on Neural Networks 10 (5), 1048�1054, 1999.
[8] G. Guo, S.Z. Li, K. Chan, �Face recognition by support vector machines�, in: Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 196�201, 2000.
[9] Chi-Yuan Yeh, Wen-Pin su, Shie-Jue Lee, �Employing multiple-kernel support vector machines for counterfeit ban knote recognition", Applied soft computing, Elsevier,2011.
[10] Chin-Chen Chang, Tai-Xing Yu, Hsuan Yen Yen, �Paper currency verification with support vector machines�, signal-image technologies and Internet-based sytem, 2007.