Usage of GBVS in Image Processing to Retrieve the Images
Bhagya Laxmi1 , Pawan Kumar Mishra2
- Department of Computer Science and Engineering, Faculty of Technology, Uttarakhand technical university, Dehradun, India.
- Department of Computer Science and Engineering, Faculty of Technology, Uttarakhand technical university, Dehradun, India.
Section:Research Paper, Product Type: Journal Paper
Volume-6 ,
Issue-3 , Page no. 138-142, Mar-2018
CrossRef-DOI: https://doi.org/10.26438/ijcse/v6i3.138142
Online published on Mar 30, 2018
Copyright © Bhagya Laxmi, Pawan Kumar Mishra . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Bhagya Laxmi, Pawan Kumar Mishra, “Usage of GBVS in Image Processing to Retrieve the Images,” International Journal of Computer Sciences and Engineering, Vol.6, Issue.3, pp.138-142, 2018.
MLA Style Citation: Bhagya Laxmi, Pawan Kumar Mishra "Usage of GBVS in Image Processing to Retrieve the Images." International Journal of Computer Sciences and Engineering 6.3 (2018): 138-142.
APA Style Citation: Bhagya Laxmi, Pawan Kumar Mishra, (2018). Usage of GBVS in Image Processing to Retrieve the Images. International Journal of Computer Sciences and Engineering, 6(3), 138-142.
BibTex Style Citation:
@article{Laxmi_2018,
author = {Bhagya Laxmi, Pawan Kumar Mishra},
title = {Usage of GBVS in Image Processing to Retrieve the Images},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {3 2018},
volume = {6},
Issue = {3},
month = {3},
year = {2018},
issn = {2347-2693},
pages = {138-142},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=1773},
doi = {https://doi.org/10.26438/ijcse/v6i3.138142}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i3.138142}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=1773
TI - Usage of GBVS in Image Processing to Retrieve the Images
T2 - International Journal of Computer Sciences and Engineering
AU - Bhagya Laxmi, Pawan Kumar Mishra
PY - 2018
DA - 2018/03/30
PB - IJCSE, Indore, INDIA
SP - 138-142
IS - 3
VL - 6
SN - 2347-2693
ER -
VIEWS | XML | |
640 | 341 downloads | 278 downloads |
Abstract
In the Modern world, the propensity of the detecting most Salient objects are trending on a large scale. In the era of Computer and science and specially in the Image Processing, we tend to find out most feasible techniques which can extract the most relevant and salient features of the selected image database. We are provided with a few most usable image retrieval methods however still we are not satisfied with the output extracted from the used method. With the advancement of the technology and the Image processing techniques, we have new methods to highlight the Salient features. One of them is Graph based Visual Saliency. GBVS is the technique which produces the salient features in a very accurate and faster way and in an elaborated way. It produces the data in the activation map and then extracts the features from the original image. We have here used a few different images and using our proposed method tried to depict the results in a graphical and pictorial way. Our effort main motive is to highlight the features of an image in a wider manner. In this paper, we would learn how to show Salient part of an image but in a large scale. In this paper, it shows 80% Salient part of an image of GBVS.
Key-Words / Index Term
Image Processing, Image Retrieval, Shape, Color, Graph based visual saliency, Content Based Image retrieval
References
[1]L. Itti, C. Koch, E. Niebur, et al.“A saliency-based search mechanism for overt and covert shifts of visual attention”1999.
[2]Hans-Christoph Nothdurft* “Salience from feature contrast: temporal properties of saliency mechanisms” May 1999.
[3]RitendraDattaJia Li James Z. Wang “Content-Based Image Retrieval Approaches and Trends of the New Age”2005.
[4]D.Walther and C. Koch. “Modeling attention to salient proto-objects” Published by Elsevier Ltd 2006.
[5] Kanakam Siva Ram Prasad, "New Non-Parametric Model for Automatic Annotations of Images in Annotation Based Image Retrieval", International Journal of Scientific Research in Computer Science and Engineering, Vol.5, Issue.4, pp.16-21, 2017.
[6]Tamura,Hideyuki,Mori,Ymawaki,Shunji,Takashi,“Textual Features corresponding to visual perception”,Vol 8,Isssue 6, Systems Man And Cybernetics,in IEEE transactions,2007.
[7]Mustafa Ozden, EdizPolat, “A colour image segmentation approach for content-based image retrieval, Pattern Recognition”2007.
[8]WeilongHoua, XinboGaoa, Dacheng Taob1*, XuelongLic “Visual Saliency Detection Using Information Divergence”2007.
[9] A. Agarwal, S.S. Bhadouria, "An Evaluation of Dominant Color descriptor and Wavelet Transform on YCbCr Color Space for CBIR", International Journal of Scientific Research in Computer Science and Engineering, Vol.5, Issue.2, pp.56-62, 2017.
[10]Lin Zhang, ZhongyiGu, and Hongyu Li*1“A novel saliency detection method by combining simple priors” 978-1-4799-2341-0/13/$31.00 IEEE ©2013.
[11]Qiong Yan Li Xu Jianping Shi JiayaJia “Hierarchical Saliency Detection”2013.
[12]Anita N. Ligade, Manisha R. Patil “Content Based Image Retrieval Using Interactive Genetic Algorithm with Relevance Feedback” (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) ,2014.
[13]ChestiAltaff Hussain, S.AranaMasthani “Robust pre-processing technique based on saliency detection for content based image retrieval systems” Volume 85 published by Elsevier,2016.