Inter-class and Intra-class Fuzzy Clustering with Pruning Algorithm
A. B. Kulkarni1 , S.V. Bonde2 , U.V. Kulkarni3
- CSE Department, SGGSIE&T, SRTM University, Nanded, India.
- EXTC Department, SGGSIE&T, SRTM University, Nanded, India.
- CSE Department, SGGSIE&T, SRTM University, Nanded, India.
Section:Research Paper, Product Type: Journal Paper
Volume-6 ,
Issue-5 , Page no. 94-99, May-2018
CrossRef-DOI: https://doi.org/10.26438/ijcse/v6i5.9499
Online published on May 31, 2018
Copyright © A. B. Kulkarni, S.V. Bonde, U.V. Kulkarni . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: A. B. Kulkarni, S.V. Bonde, U.V. Kulkarni, “Inter-class and Intra-class Fuzzy Clustering with Pruning Algorithm,” International Journal of Computer Sciences and Engineering, Vol.6, Issue.5, pp.94-99, 2018.
MLA Style Citation: A. B. Kulkarni, S.V. Bonde, U.V. Kulkarni "Inter-class and Intra-class Fuzzy Clustering with Pruning Algorithm." International Journal of Computer Sciences and Engineering 6.5 (2018): 94-99.
APA Style Citation: A. B. Kulkarni, S.V. Bonde, U.V. Kulkarni, (2018). Inter-class and Intra-class Fuzzy Clustering with Pruning Algorithm. International Journal of Computer Sciences and Engineering, 6(5), 94-99.
BibTex Style Citation:
@article{Kulkarni_2018,
author = {A. B. Kulkarni, S.V. Bonde, U.V. Kulkarni},
title = {Inter-class and Intra-class Fuzzy Clustering with Pruning Algorithm},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {5 2018},
volume = {6},
Issue = {5},
month = {5},
year = {2018},
issn = {2347-2693},
pages = {94-99},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=1943},
doi = {https://doi.org/10.26438/ijcse/v6i5.9499}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i5.9499}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=1943
TI - Inter-class and Intra-class Fuzzy Clustering with Pruning Algorithm
T2 - International Journal of Computer Sciences and Engineering
AU - A. B. Kulkarni, S.V. Bonde, U.V. Kulkarni
PY - 2018
DA - 2018/05/31
PB - IJCSE, Indore, INDIA
SP - 94-99
IS - 5
VL - 6
SN - 2347-2693
ER -
VIEWS | XML | |
851 | 504 downloads | 344 downloads |
Abstract
The paper proposes a new supervised fuzzy clustering algorithm based on inter-class and intra-class clustering technique to create the clusters i.e. fuzzy hyperspheres (FHSs) and pruning technique to prune redundant FHSs which are camouflaged by the other FHSs of the same class. The proposed clustering technique finds the centroid and the width of the FHS based on the spread of inter-class patterns and then groups intra-class patterns using fuzzy membership function, whereas the pruning technique creates the optimal number of FHSs from the FHSs created in the earlier stage. This algorithm is independent of parameters, limits the interference of outliers and converges quickly to create an optimal number of clusters. The main feature of the proposed fuzzy clustering algorithm is that it camouflages the clustered patterns giving 100% accuracy for any training dataset. The performance of the proposed algorithm is tested on eleven benchmark datasets and it is observed that the proposed algorithm results are superior and comparable with classifiers using clustering algorithm.
Key-Words / Index Term
Fuzzy clustering, Fuzzy membership function, Fuzzy hyperspheres, pruning
References
[1] K. Rose, F. Guerewitz, G. Fox, “A Deterministic annealing Approach to Clustering”, Pattern Recognition Let., Vol. 11, Issue. 9, pp. 589-594, 1990.
[2] L. Bai, J. Liang, C. Dang, F. Cao, “A Novel Fuzzy Clustering Algorithm With Between-Cluster Information for Categorical Data”, Fuzzy Sets Syst., Vol. 215, pp. 55-73, 2013.
[3] F. Tung, A. Wong, D. A. Clausi, “Enabling Scalable Spectral Clustering for Image Segmentation”, Pattern Recogn., Vol 43, Issue. 12, pp. 4069-4076, 2013.
[4] Y. Yan, L. Chen, W. C. Tjhi, “Fuzzy Semi-Supervised Co-Clustering for Text Documents”, Fuzzy Sets Syst., Vol 215, pp. 74-89, 2013.
[5] B. Sun, W. Liu, Q. Zhong, “Hierarchical Speaker Identification Using Speaker Clustering,” Int. Conf. on Natural Language Processing and Knowledge Engineering, pp. 299-304 2003.
[6] B. Dogan, M. Korurek, “A New Ecg Beat Clustering Method Based On Kernelized Fuzzy C-Means And Hybrid Ant Colony Optimization for Continuous Domains”, Appl. Soft Comput.,Vol 12 , Issue. 11, pp. 3442–3451, 2012.
[7] Y. Chen, J. Wang, And R. Krovetz, “Clue: Cluster-Based Retrieval Of Images By Unsupervised Learning”, IEEE Trans. on Image Processing, Vol.14, Issue. 8, pp. 1187–1201, 2005.
[8] C. R. Lin And M. Gerla, “Adaptive Clustering for Mobile Wireless Networks”, Journal on Selected Areas in Communication, Vol. 15, Issue. 7, pp.1265-1275, 1997.
[9] R.N. Dave, R. Krishnpuram, “Robust Clustering Method: A Unified View”, IEEE Trans. Fuzzy System, Vol. 5, Issue. 2, pp. 270-293, 1997.
[10] J. C. Bezdek, “Pattern Recognition With Fuzzy Objective Function Algorithms”, Plenum press, New York, 1981.
[11] L. Kaufman, P.J. Rousseeuw, “Finding Groups In Data: An Introduction to Cluster Analysis”, Wiley, Hoboken, 2005.
[12] N. R. Pal, K. Pal, J. M. Keller, J. C. Bezdek, “A Possibilistic Fuzzy C-Means Clustering Algorithm”, IEEE Trans. Fuzz,Y Syst., Vol.13, No.4, pp. 508-516, 2005.
[13] Simpson P. K.,“Fuzzy Min-Max Neural Networks Part-2: Clustering”, IEEE Trans. Fuzzy System, Vol. 1, Issue. 1, pp.32-45, 1993.
[14] U. V. Kulkarni, T. R. Sontakke, A. B. Kulkarni, “Fuzzy Hyperline Segment Clustering Neural Network”, Electronics Letters, Vol.37, Issue. 5, pp. 301-303, 2001.
[15] J. C. Bezdek, N. R. Pal, “Generalized Clustering Networks And Kohonen’s Self-Organizing Scheme”, IEEE Neural Networks, Vol. 4, Issue. 4, pp. 549-557, 1993.
[16] G. Carpenter, S. Grossberg, N. Maukuzon, J. Reynolds, And D. B. Rosen, “Fuzzy Artmap: A Neural Network Architecture for Incremental Supervised Learning Of Analog Multidimensional Maps”, IEEE Trans. Neural Networks,Vol. 3, Issue. 5, pp. 698-713, 1992.
[17] A. Likas, N. Vlassis, Verbeek, “The Global K-Means Clustering Algorithm”, Pattern Recog. Let., Vol. 36, pp. 451-461, 2003.
[18] D. W. Kim, K. H. Lee, D. Lee, “Fuzzy Cluster Validation Index Based On Inter-Cluster Proximity,” Pattern Recognition Letters, Vol. 24, Issue. 15, pp. 2561-2574, 2003.
[19] A. B. Kulkarni, S. V. Bonde, U. V. Kulkarni, “A Novel Fuzzy Clustering Algorithm for Radial Basis Function Neural Network”, International Journal on Future Revolution in Computer Science and Communication Engineering, Vol. 4, Issue. 4, pp.751-756, 2018.
[20] M. Rouhani, D. S. Javan, “Two Fast And Accurate Heuristic Rbf Learning Rules for Data Classification”, Neural Networks, Vol.75, pp. 150-161, 2016.
[21] Yuanshan Liu, He Huang, Ting Wen Huang B, Xusheng Qian,“An Improved Maximum Spread Algorithm With Application to Complex-Valued Rbf Neural Networks”, Neurocomputing, Vol. 216, pp. 261-267, 2016.