A Comparative Analysis on Evaluation of Classification Algorithms Based on Ionospheric Data
Chandrika 1 , Divya. C2 , Gowramma. G. S3 , Varun. C. R4
- Computer Science and Engineering, Don Bosco Institute of Technology, Bengaluru, India.
- Computer Science and Engineering, Don Bosco Institute of Technology, Bengaluru, India.
- Computer Science and Engineering, Don Bosco Institute of Technology, Bengaluru, India.
- Computer Science and Engineering, Don Bosco Institute of Technology, Bengaluru, India.
Section:Research Paper, Product Type: Journal Paper
Volume-6 ,
Issue-5 , Page no. 636-640, May-2018
CrossRef-DOI: https://doi.org/10.26438/ijcse/v6i5.636640
Online published on May 31, 2018
Copyright © Chandrika, Divya. C, Gowramma. G. S, Varun. C. R . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Chandrika, Divya. C, Gowramma. G. S, Varun. C. R, “A Comparative Analysis on Evaluation of Classification Algorithms Based on Ionospheric Data,” International Journal of Computer Sciences and Engineering, Vol.6, Issue.5, pp.636-640, 2018.
MLA Style Citation: Chandrika, Divya. C, Gowramma. G. S, Varun. C. R "A Comparative Analysis on Evaluation of Classification Algorithms Based on Ionospheric Data." International Journal of Computer Sciences and Engineering 6.5 (2018): 636-640.
APA Style Citation: Chandrika, Divya. C, Gowramma. G. S, Varun. C. R, (2018). A Comparative Analysis on Evaluation of Classification Algorithms Based on Ionospheric Data. International Journal of Computer Sciences and Engineering, 6(5), 636-640.
BibTex Style Citation:
@article{C_2018,
author = {Chandrika, Divya. C, Gowramma. G. S, Varun. C. R},
title = {A Comparative Analysis on Evaluation of Classification Algorithms Based on Ionospheric Data},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {5 2018},
volume = {6},
Issue = {5},
month = {5},
year = {2018},
issn = {2347-2693},
pages = {636-640},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=2033},
doi = {https://doi.org/10.26438/ijcse/v6i5.636640}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i5.636640}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=2033
TI - A Comparative Analysis on Evaluation of Classification Algorithms Based on Ionospheric Data
T2 - International Journal of Computer Sciences and Engineering
AU - Chandrika, Divya. C, Gowramma. G. S, Varun. C. R
PY - 2018
DA - 2018/05/31
PB - IJCSE, Indore, INDIA
SP - 636-640
IS - 5
VL - 6
SN - 2347-2693
ER -
VIEWS | XML | |
718 | 293 downloads | 140 downloads |
Abstract
Data mining technique is an application of the regular process for analyzing the huge size of existing data, excavating valuable information to support the decision-making process. The Earth’s upper atmosphere consists of an ionized part referred to as the ionosphere. It lies between eighty kilometre to one thousand kilometer height above the sea level, an area which comprises the parts of the thermosphere, mesosphere as well as the exosphere. The ionosphere is a shell of electrons and electrically stimulated atoms that ambiances the Earth. The target for Weka tool classification are these free electrons in the ionosphere. The performance analysis and experimental results carried out for five classifiers such as Naive Bayes, SVM, ANN, K-NN, and J48 are compared and evaluated in this study. The overall performance of these algorithms is analyzed based on the classification accuracy in which decision tree algorithm has achieved best performance compared to other algorithms. The above accuracy in ionospheric data classification is the focal idea of assessing the performance in data mining algorithms.
Key-Words / Index Term
Data mining, Naive Bayes, SVM, ANN, K-NN, J48
References
[1] Fayyad, Usama; Piatetsky-Shapiro, Gregory; Smyth, Padhraic (1996), "From Data Mining to Knowledge Discovery in Databases"
[2] K. Rawer, “Wave Propagation in the Ionosphere”. Kluwer Acad.Publ., Dordrecht 1993. ISBN 0-7923-0775-5
[3] Sigillito V G., Wing S P, Hutton L V and Baker K B, “Classification of radar returns from the ionosphere using neural networks” Johns Hopkins APL Technical Digest, 10, 262-266.
[4] Marie Fernandes , “Data Mining: A Comparative Study of its Various Techniques and its Process”, International Journal of Scientific Research in Computer Science and Engineering, Vol.5, Issue.1, pp.19-23, 2017.
[5] P. Rutravigneshwaran, “A Study of Intrusion Detection System using Efficient Data Mining Techniques”, International Journal of Scientific Research in Network Security and Communication, Vol.5, Issue.6, pp.5-8, 2017.
[6] P.Keerthana et al, “Performance Analysis of Data Mining Algorithms for Medical Image Classification” International Journal of Computer Science and Mobile Computing, Vol.5 Issue.3, March- 2016.
[7] Rokach, Lior, and Oded Maimon. "Decision Trees" 28. Web. 1 Feb. 2013.
[8] P Thamilselvana, Dr. J. G. R. Sathiaseelanb, “A Comparative Study of Data Mining Algorithms for Image Classification” Published Online June 2015 in MECS. DOI: 10.5815/ijeme.2015.02.01.