Hpnna Based Fss Designing: A Case Study
Mahuya Panda1 , Partha Pratim Sarkar2
- Dept.of EE, Camellia School of Engineering & Technology, Barasat, West Bengal, India - 700124.
- Department of Engineering and Technological Studies, University of Kalyani, Kalyani, Nadia, –741235, West Bengal, India.
Section:Review Paper, Product Type: Journal Paper
Volume-6 ,
Issue-5 , Page no. 792-796, May-2018
CrossRef-DOI: https://doi.org/10.26438/ijcse/v6i5.792796
Online published on May 31, 2018
Copyright © Mahuya Panda, Partha Pratim Sarkar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Mahuya Panda, Partha Pratim Sarkar, “Hpnna Based Fss Designing: A Case Study,” International Journal of Computer Sciences and Engineering, Vol.6, Issue.5, pp.792-796, 2018.
MLA Style Citation: Mahuya Panda, Partha Pratim Sarkar "Hpnna Based Fss Designing: A Case Study." International Journal of Computer Sciences and Engineering 6.5 (2018): 792-796.
APA Style Citation: Mahuya Panda, Partha Pratim Sarkar, (2018). Hpnna Based Fss Designing: A Case Study. International Journal of Computer Sciences and Engineering, 6(5), 792-796.
BibTex Style Citation:
@article{Panda_2018,
author = {Mahuya Panda, Partha Pratim Sarkar},
title = {Hpnna Based Fss Designing: A Case Study},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {5 2018},
volume = {6},
Issue = {5},
month = {5},
year = {2018},
issn = {2347-2693},
pages = {792-796},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=2064},
doi = {https://doi.org/10.26438/ijcse/v6i5.792796}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i5.792796}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=2064
TI - Hpnna Based Fss Designing: A Case Study
T2 - International Journal of Computer Sciences and Engineering
AU - Mahuya Panda, Partha Pratim Sarkar
PY - 2018
DA - 2018/05/31
PB - IJCSE, Indore, INDIA
SP - 792-796
IS - 5
VL - 6
SN - 2347-2693
ER -
VIEWS | XML | |
466 | 260 downloads | 207 downloads |
Abstract
Soft computing exploits the biological processes to simplify scientific and technical problems. Correspondingly, soft computing is employed in Frequency Selective Surface designing. In this particular endeavor a Back Propagation Algorithm trained Artificial Neural Network is reported for the designing of single layer Frequency Selective Surface. The prime aspiration was to ascertain the Resonant Frequency and the Band Width of a crossed dipole Frequency Selective Surface. In due course of action and to attain maximized throughput latterly a hybrid Particle Swarm Optimization trained Artificial Neural Network Algorithm is formulated. The empirical study confirmed that Hybrid Particle Swarm Optimization trained Artificial Neural Network is amply efficient and effective for global and fast local searching procedures. Afterward a comparative analysis of Hybrid Particle Swarm Optimization and Back Propagation Algorithm is contemplated.
Key-Words / Index Term
ANN, FSS, BPA, HPNNA, PSO
References
[1]. B Munk , “Frequency Selective Surfaces: Theory and Design “(NewYork: John Wiley & Sons Inc.),2000.
[2]. N. Guerin ; C. Hafner ; X. Cui ; R. Vahldieck, “Compact directive antennas using frequency-selective surfaces (FSS)”,Microwave Conference Proceedings, APMC 2005. Asia-Pacific Conference Proceedings, 2005.
[3]. Ortiz, J. D., Baena, J. D., Marques, R., et al., “A band-pass/stop filter made of srrs and c-srrs" in Antennas and Propagation (APSURSI), 2011 IEEE International Symposium on , 2011.
[4]. Ghaffer I. Kiani and Rabah W. Aldhaheri, “Wide Band FSS for Increased Thermal and Communication Efficiency in Smart Buildings”, IEEE, 2014.
[5]. Woo Cheol Choi, Ki Joon Kim, Young Joong Yoon, “Design of FSS Unit-cell Integrated in Water Bolus for Microwave Biomedical Application” Proceedings of iWEM2014, Sapporo, Japan, 2014.
[6]. Chakravarty, S., Mittra, R. and Williams, N. R., “Application of a microgenetic algorithm (mga) to the design of broadband microwave absorbers using multiple frequency selective surface screens buried in dielectrics”, Antennas and Propagation, IEEE Transactions on, Vol. 50no3), pp. 284-296, 2002.
[7]. Asim EgemenYILMAZ , Mustafa KUZUOGLU, “Design of the Square Loop Frequency Selective Surfaces with Particle Swarm Optimization via the Equivalent Circuit Model”, RADIO ENGINEERING, vol. 18no2, pp95-101,2009.
[8]. M Panda, S Nandi and P P Sarkar, “A comparative study of performance of different back-propagation neural network methods for prediction of resonant frequency of a slot-loaded double-layer frequency-selective surface”, Indian Journal of Physics, 2015.
[9]. Mahuya Panda and Partha Pratim Sarkar, “Prediction Of Periodicity Of FSS Structure Using Particle Swarm Optimization”, I-manager’s Journal on Electronics Engineering, vol. 7 no. 3 ,pp25-31, 2017.
[10]. Kennedy, J., and Eberhart, R., “Particle Swarm Optimization. IEEE International Conference on Neural Networks; Piscataway pp 1942-1948, 1995.
[11]. S Haykin, “Neural Networks, A Comprehensive Foundation” (Englewood Cliffs: Prentice Hall) 2nd edn, 1999.
[12]. Jing-Ru Zhang , Jun Zhang, Tat-Ming Lok , Michael R. Lyu, “ A hybrid particle swarm optimization–back-propagation algorithm for Feed forward neural network training”, Applied Mathematics and Computation , Vol. 185,pp1026–1037, 2007