Further Results on Sum *Number and Mod Sum* Number of Graphs
R. K. Samal1 , D. Mishra2
Section:Research Paper, Product Type: Journal Paper
Volume-6 ,
Issue-8 , Page no. 15-19, Aug-2018
CrossRef-DOI: https://doi.org/10.26438/ijcse/v6i8.1519
Online published on Aug 31, 2018
Copyright © R. K. Samal, D. Mishra . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: R. K. Samal, D. Mishra, “Further Results on Sum *Number and Mod Sum* Number of Graphs,” International Journal of Computer Sciences and Engineering, Vol.6, Issue.8, pp.15-19, 2018.
MLA Style Citation: R. K. Samal, D. Mishra "Further Results on Sum *Number and Mod Sum* Number of Graphs." International Journal of Computer Sciences and Engineering 6.8 (2018): 15-19.
APA Style Citation: R. K. Samal, D. Mishra, (2018). Further Results on Sum *Number and Mod Sum* Number of Graphs. International Journal of Computer Sciences and Engineering, 6(8), 15-19.
BibTex Style Citation:
@article{Samal_2018,
author = {R. K. Samal, D. Mishra},
title = {Further Results on Sum *Number and Mod Sum* Number of Graphs},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {8 2018},
volume = {6},
Issue = {8},
month = {8},
year = {2018},
issn = {2347-2693},
pages = {15-19},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=2647},
doi = {https://doi.org/10.26438/ijcse/v6i8.1519}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i8.1519}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=2647
TI - Further Results on Sum *Number and Mod Sum* Number of Graphs
T2 - International Journal of Computer Sciences and Engineering
AU - R. K. Samal, D. Mishra
PY - 2018
DA - 2018/08/31
PB - IJCSE, Indore, INDIA
SP - 15-19
IS - 8
VL - 6
SN - 2347-2693
ER -
VIEWS | XML | |
647 | 663 downloads | 251 downloads |
Abstract
In this paper we establish that the graphs K_n-E(K_r ), K_(n ,n) for n ≥2, K_(n ,n)-E(〖nK〗_2 ) for n ≥2, P_n⨀K_1 for n ≥2 and C_n⨀K_1 for n ≥4 possesses sum* and modsum* labelings and find their sum * and mod sum* numbers.
Key-Words / Index Term
Sum* graphs, Sum* number, Mod sum* graphs and Mod sum* number
References
M. Sutton, “Sumable Graphs Labellings and Their Applications”, Ph. D. Thesis, Department of Computer Science, The University of Newcastle, 2001.
F.Harary, “Graph Theory”, Addison-Wesley, Reading, MA, 1969.
F. Harary, “Sum Graphs and Difference Graphs”, Congressus Numerantium , Vol. 72 , pp. 101 - 108, 1990.
J. Bolland, R. Laskar, C. Turner, G. Domke, “ On Mod Sum Graphs” , Congressus Numerantium, Vol. 70, pp.131-135, 1990.
W. Dou, J. Gao, “The (Mod, Integral) Sum Numbers of Fans and K_(n,n)-E(〖nK〗_2 )”, Discrete Mathematics, Vol. 306, pp.2655-2669, 2006.
H.Wang, P. Li, “Some Results on Exclusive Sum Graphs”,
J. Appl. Math Comput, Vol. 34, pp. 343-351, 2010.