Open Access   Article Go Back

Color Directional Binary Code for Image Indexing and Retrieval

M. V. Bonde1 , D. D. Doye2

Section:Research Paper, Product Type: Journal Paper
Volume-6 , Issue-11 , Page no. 101-106, Nov-2018

CrossRef-DOI:   https://doi.org/10.26438/ijcse/v6i11.101106

Online published on Nov 30, 2018

Copyright © M. V. Bonde, D. D. Doye . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: M. V. Bonde, D. D. Doye, “Color Directional Binary Code for Image Indexing and Retrieval,” International Journal of Computer Sciences and Engineering, Vol.6, Issue.11, pp.101-106, 2018.

MLA Style Citation: M. V. Bonde, D. D. Doye "Color Directional Binary Code for Image Indexing and Retrieval." International Journal of Computer Sciences and Engineering 6.11 (2018): 101-106.

APA Style Citation: M. V. Bonde, D. D. Doye, (2018). Color Directional Binary Code for Image Indexing and Retrieval. International Journal of Computer Sciences and Engineering, 6(11), 101-106.

BibTex Style Citation:
@article{Bonde_2018,
author = {M. V. Bonde, D. D. Doye},
title = {Color Directional Binary Code for Image Indexing and Retrieval},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {11 2018},
volume = {6},
Issue = {11},
month = {11},
year = {2018},
issn = {2347-2693},
pages = {101-106},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=3130},
doi = {https://doi.org/10.26438/ijcse/v6i11.101106}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i11.101106}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=3130
TI - Color Directional Binary Code for Image Indexing and Retrieval
T2 - International Journal of Computer Sciences and Engineering
AU - M. V. Bonde, D. D. Doye
PY - 2018
DA - 2018/11/30
PB - IJCSE, Indore, INDIA
SP - 101-106
IS - 11
VL - 6
SN - 2347-2693
ER -

VIEWS PDF XML
513 462 downloads 380 downloads
  
  
           

Abstract

This research paper proposes a novel algorithm meant for image indexing and retrieval, by integrating color and texture features. First, the RGB image is converted to HSV space, then these space features are collected by constructing H & S space histograms and texture features, which are collected from V space of an image by Directional Binary Code (DBC). In the proposed algorithm both, color histograms and texture feature, are then concatenated to generate the feature vector. Using feature vector of query image, similar images are then extracted using different distance measures. The retrieval results for this proposed algorithm is tested over Corel 1000 image database. After investigation, results demonstrate the substantial improvement in terms of retrieval precision and recall as equated to LBP, DBC feature algorithms.

Key-Words / Index Term

Feature Extraction, Local Binary Patterns, Directional Binary Code, Texture, Pattern Recognition, Image Retrieval.

References

[1] Y. Rui and T. S. Huang, “Image retrieval: Current techniques, promising directions and open issues”, J.. Vis. Commun. Image Represent., 10 (1999) 39–62.
[2] A. W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain,” Content-based image retrieval at the end of the early years”, IEEE Trans. Pattern Anal. Mach. Intell., 22 (12) 1349–1380, 2000.
[3] M. Kokare, B. N. Chatterji, P. K. Biswas, “A survey on current content based image retrieval methods”, IETE J. Res., 48 (3&4) 261–271, 2002.
[4] Ying Liu, Dengsheng Zhang, Guojun Lu, Wei-Ying Ma, “A survey of content-based image retrieval with high-level semantics”, Elsevier J. Pattern Recognition, 40, 262-282, 2007.
[5] M. J. Swain and D. H. Ballar, “Indexing via color histograms”, Proc. 3rd Int. Conf. Computer Vision, Rochester Univ., NY, (1991) 11–32.
[6] M. Stricker and M. Oreng, “Similarity of color images”, Proc. SPIE, Storage and Retrieval for Image and Video Databases, (1995) 381–392.
[7] G. Pass, R. Zabih, and J. Miller, “Comparing images using color coherence vectors”, Proc. 4th ACM Multimedia Conf., Boston, Massachusetts, US, (1997) 65–73.
[8] J. Huang, S. R. Kumar, and M. Mitra, “Combining supervised learning with color correlograms for content-based image retrieval”, Proc. 5th ACM Multimedia Conf., (1997) 325–334.
[9] Z. M. Lu and H. Burkhardt, “Colour image retrieval based on DCT domain vector quantization index histograms”, J. Electron. Lett., 41 (17) (2005) 29–30.
[10] J. R. Smith and S. F. Chang, “Automated binary texture feature sets for image retrieval”, Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Columbia Univ., New York, (1996) 2239–2242.
[11] H. A. Moghaddam, T. T. Khajoie, A. H Rouhi and M. Saadatmand T., “Wavelet Correlogram: A new approach for image indexing and retrieval”, Elsevier J. Pattern Recognition, 38 (2005) 2506-2518.
[12] H. A. Moghaddam and M. Saadatmand T., “Gabor wavelet Correlogram Algorithm for Image Indexing and Retrieval”, 18th Int. Conf. Pattern Recognition, K.N. Toosi Univ. of Technol., Tehran, Iran, (2006) 925-928.
[13] A. Ahmadian, A. Mostafa, “An Efficient Texture Classification Algorithm using Gabor wavelet”, 25th Annual international conf. of the IEEE EMBS, Cancun, Mexico, (2003) 930-933.
[14] H. A. Moghaddam, T. T. Khajoie and A. H. Rouhi, “A New Algorithm for Image Indexing and Retrieval Using Wavelet Correlogram”, Int. Conf. Image Processing, K.N. Toosi Univ. of Technol., Tehran, Iran, 2 (2003) 497-500.
[15] M. Saadatmand T. and H. A. Moghaddam, “Enhanced Wavelet Correlogram Methods for Image Indexing and Retrieval”, IEEE Int. Conf. Image Processing, K.N. Toosi Univ. of Technol., Tehran, Iran, (2005) 541-544.
[16] M. Saadatmand T. and H. A. Moghaddam, “A Novel Evolutionary Approach for Optimizing Content Based Image Retrieval”, IEEE Trans. Systems, Man, and Cybernetics, 37 (1) (2007) 139-153.
[17] L. Birgale, M. Kokare, D. Doye, “Color and Texture Featuresfor Content Based Image Retrieval”, International Conf. Computer Grafics, Image and Visualisation, Washington, DC, USA, (2006) 146 – 149.
[18] M. Subrahmanyam, A. B. Gonde and R. P. Maheshwari, “Color and Texture Features for Image Indexing and Retrieval”, IEEE Int. Advance Computing Conf., Patial, India, (2009) 1411-1416.
[19] Subrahmanyam Murala, R. P. Maheshwari, R. Balasubramanian, “A Correlogram Algorithm for Image Indexing and Retrieval Using Wavelet and Rotated Wavelet Filters”, Int. J. Signal and Imaging Systems Engineering.
[20] T. Ojala, M. Pietikainen, D. Harwood, “A comparative sudy of texture measures with classification based on feature distributions”, Elsevier J. Pattern Recognition, 29 (1): 51-59, 1996.
[21] T. Ojala, M. Pietikainen, T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns”, IEEE Trans. Pattern Anal. Mach. Intell., 24 (7): 971-987, 2002.
[22] M. Pietikainen, T. Ojala, T. Scruggs, K. W. Bowyer, C. Jin, K. Hoffman, J. Marques, M. Jacsik, W. Worek, “Overview of the face recognition using feature distributions”, Elsevier J. Pattern Recognition, 33 (1): 43-52, 2000.
[23] T. Ahonen, A. Hadid, M. Pietikainen, “Face description with local binary patterns: Applications to face recognition”, IEEE Trans. Pattern Anal. Mach. Intell., 28 (12): 2037-2041, 2006.
[24] G. Zhao, M. Pietikainen, “Dynamic texture recognition using local binary patterns with an application to facial expressions”, IEEE Trans. Pattern Anal. Mach. Intell., 29 (6): 915-928, 2007.
[25] M. Heikkil;a, M. Pietikainen, “A texture based method for modeling the background and detecting moving objects”, IEEE Trans. Pattern Anal. Mach. Intell., 28 (4): 657-662, 2006.
[26] X. Huang, S. Z. Li, Y. Wang, “Shape localization based on statistical method using extended local binary patterns”, Proc. Inter. Conf. Image and Graphics, 184-187, 2004.
[27] M. Heikkila, M. Pietikainen, C. Schmid, “Description of interest regions with local binary patterns”, Elsevie J. Pattern recognition, 42: 425-436, 2009.
[28] M. Li, R. C. Staunton, “Optimum Gabor filter design and local binary patterns for texture segmentation”, Elsevie J. Pattern recognition, 29: 664-672, 2008.
[29] B. Zhang, Y. Gao, S. Zhao, J. Liu, “Local derivative pattern versus local binary pattern: Face recognition with higher-order local pattern descriptor”, IEEE Trans. Image Proc., 19 (2): 533-544, 2010.
[30] B. Zhang, L. Zhang, D. Zhang, L. Shen, “Directional binary code with application to PolyU near-infrared face database”, Pattern Recognition Letters 31 (2010) 2337–2344.
[31] N. Jhanwara, S. Chaudhuri, G. Seetharamanc, and B. Zavidovique, “Content based image retrieval using motif co-occurrence matrix””, Image and Vision Computing 22, (2004) 1211–1220.
[32] C H Lin, Chen R T, Chan Y K A., Smart content-based image retrieval system based on color and texture feature”, Image and Vision Computing 27 (2009) 658-665.
[33] Corel 1000 and Corel 10000 image database. [Online]. Available: http://wang.ist.psu.edu/docs/related.shtml.