A Probabilistic Estimation of Cluster Region Prone to Inter Cluster Data Movement
A. M. Rajee1 , F. Sagayaraj Francis2
Section:Research Paper, Product Type: Journal Paper
Volume-2 ,
Issue-11 , Page no. 138-141, Nov-2014
Online published on Nov 30, 2014
Copyright © A. M. Rajee , F. Sagayaraj Francis . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: A. M. Rajee , F. Sagayaraj Francis, “A Probabilistic Estimation of Cluster Region Prone to Inter Cluster Data Movement,” International Journal of Computer Sciences and Engineering, Vol.2, Issue.11, pp.138-141, 2014.
MLA Style Citation: A. M. Rajee , F. Sagayaraj Francis "A Probabilistic Estimation of Cluster Region Prone to Inter Cluster Data Movement." International Journal of Computer Sciences and Engineering 2.11 (2014): 138-141.
APA Style Citation: A. M. Rajee , F. Sagayaraj Francis, (2014). A Probabilistic Estimation of Cluster Region Prone to Inter Cluster Data Movement. International Journal of Computer Sciences and Engineering, 2(11), 138-141.
BibTex Style Citation:
@article{Rajee_2014,
author = {A. M. Rajee , F. Sagayaraj Francis},
title = {A Probabilistic Estimation of Cluster Region Prone to Inter Cluster Data Movement},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {11 2014},
volume = {2},
Issue = {11},
month = {11},
year = {2014},
issn = {2347-2693},
pages = {138-141},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=318},
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=318
TI - A Probabilistic Estimation of Cluster Region Prone to Inter Cluster Data Movement
T2 - International Journal of Computer Sciences and Engineering
AU - A. M. Rajee , F. Sagayaraj Francis
PY - 2014
DA - 2014/11/30
PB - IJCSE, Indore, INDIA
SP - 138-141
IS - 11
VL - 2
SN - 2347-2693
ER -
VIEWS | XML | |
3456 | 3367 downloads | 3537 downloads |
Abstract
[1] J. Han and M.Kamber, “Data Mining: Concepts and Techniques”, Morgan Kaufmann Publishers, 2001. [2] S.Lloyd, “Least squares quantization in PCM”, IEEE Transactions on Information Theory, 1982, pp.129-136. [3] A. Campan and G. Serban, “Adaptive Clustering algorithms”, Advances in Artificial Intelligence, Springer, 2006. [4] G.Serban and A.Campan, “Adaptive Clustering using a Core-based Approach”, Informatica, Volume L, Number 2, 2005. [5] Charu C. Aggarwal, Philip S. Yu, “A Framework for Clustering Massive Text and Categorical Data Streams”, ACM SIAM Data Mining Conference, 2006 [6] Angie King, “Online k-Means Clustering of Non-stationary Data”, Prediction Project Report, 2012 [7] Seokkyung Chung and Dennis McLeod, “Dynamic Pattern Mining: An Incremental Data Clustering Approach”, Journal on Data Semantics, Volume 2, 2005 [8] A.M.Rajee and F.Sagayaraj Francis, “Inter Cluster Movement Estimation model based on cluster parameters”, in Proc. IEEE International Conference on Computational Intelligence and Computing Research”, 2013, pp.369-372. [9] Jain A. K, “Data Clustering: 50 Years Beyond K-means”, Pattern Recognition Letters 31(8), 2010, pp.651–666. [10] Jain A. K, Murty M. N and Flynn, P. J, “Data Clustering: A Review. ACM Computing Surveys”, 31(3), 1999, pp. 264–323.
Key-Words / Index Term
Data Clustering; Inter Cluster Data Movement; Probabilistic Model; Un-Clustered Information
References
[1] J. Han and M.Kamber, “Data Mining: Concepts and Techniques”, Morgan Kaufmann Publishers, 2001.
[2] S.Lloyd, “Least squares quantization in PCM”, IEEE Transactions on Information Theory, 1982, pp.129-136.
[3] A. Campan and G. Serban, “Adaptive Clustering algorithms”, Advances in Artificial Intelligence, Springer, 2006.
[4] G.Serban and A.Campan, “Adaptive Clustering using a Core-based Approach”, Informatica, Volume L, Number 2, 2005.
[5] Charu C. Aggarwal, Philip S. Yu, “A Framework for Clustering Massive Text and Categorical Data Streams”, ACM SIAM Data Mining Conference, 2006
[6] Angie King, “Online k-Means Clustering of Non-stationary Data”, Prediction Project Report, 2012
[7] Seokkyung Chung and Dennis McLeod, “Dynamic Pattern Mining: An Incremental Data Clustering Approach”, Journal on Data Semantics, Volume 2, 2005
[8] A.M.Rajee and F.Sagayaraj Francis, “Inter Cluster Movement Estimation model based on cluster parameters”, in Proc. IEEE International Conference on Computational Intelligence and Computing Research”, 2013, pp.369-372.
[9] Jain A. K, “Data Clustering: 50 Years Beyond K-means”, Pattern Recognition Letters 31(8), 2010, pp.651–666.
[10] Jain A. K, Murty M. N and Flynn, P. J, “Data Clustering: A Review. ACM Computing Surveys”, 31(3), 1999, pp. 264–323.