A Survey on Twitter Sentiment Analysis
Eriq-Ur Rahman1 , Rituparna Sarma2 , Rajesh Sinha3 , Priyankar Sinha4 , Adarsh Pradhan5
Section:Survey Paper, Product Type: Journal Paper
Volume-6 ,
Issue-11 , Page no. 644-648, Nov-2018
CrossRef-DOI: https://doi.org/10.26438/ijcse/v6i11.644648
Online published on Nov 30, 2018
Copyright © Eriq-Ur Rahman, Rituparna Sarma, Rajesh Sinha, Priyankar Sinha, Adarsh Pradhan . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Eriq-Ur Rahman, Rituparna Sarma, Rajesh Sinha, Priyankar Sinha, Adarsh Pradhan, “A Survey on Twitter Sentiment Analysis,” International Journal of Computer Sciences and Engineering, Vol.6, Issue.11, pp.644-648, 2018.
MLA Style Citation: Eriq-Ur Rahman, Rituparna Sarma, Rajesh Sinha, Priyankar Sinha, Adarsh Pradhan "A Survey on Twitter Sentiment Analysis." International Journal of Computer Sciences and Engineering 6.11 (2018): 644-648.
APA Style Citation: Eriq-Ur Rahman, Rituparna Sarma, Rajesh Sinha, Priyankar Sinha, Adarsh Pradhan, (2018). A Survey on Twitter Sentiment Analysis. International Journal of Computer Sciences and Engineering, 6(11), 644-648.
BibTex Style Citation:
@article{Rahman_2018,
author = {Eriq-Ur Rahman, Rituparna Sarma, Rajesh Sinha, Priyankar Sinha, Adarsh Pradhan},
title = {A Survey on Twitter Sentiment Analysis},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {11 2018},
volume = {6},
Issue = {11},
month = {11},
year = {2018},
issn = {2347-2693},
pages = {644-648},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=3219},
doi = {https://doi.org/10.26438/ijcse/v6i11.644648}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i11.644648}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=3219
TI - A Survey on Twitter Sentiment Analysis
T2 - International Journal of Computer Sciences and Engineering
AU - Eriq-Ur Rahman, Rituparna Sarma, Rajesh Sinha, Priyankar Sinha, Adarsh Pradhan
PY - 2018
DA - 2018/11/30
PB - IJCSE, Indore, INDIA
SP - 644-648
IS - 11
VL - 6
SN - 2347-2693
ER -
VIEWS | XML | |
1107 | 465 downloads | 225 downloads |
Abstract
Twitter sentiment analysis offers organizations an ability to monitor public feeling towards the products and events related to them in real time. Public and private opinion about a wide variety of subjects are expressed and spread continually via numerous tweets. It offers organizations a fast and more effective way to analyze customer’s perspectives towards the success in the market place. Sentiment analysis is an approach to be used to computationally measure customer’s perceptions to a vast extent. This is a survey on the design of a sentiment analysis. After extraction of a vast amount of tweets, it classifies perspectives of customers via tweets into positive and negative sentiments. Which is obtained after classifying the data by using classification approaches like for example Bayes Naïve, Linear Regression, etc.
Key-Words / Index Term
Twitter, sentiment analysis, datasets, pre-processing, feature extraction, classification
References
[1] A. K. Jose, N. Bhatia, and S. Krishna, “TwitterSentimentAnalysis”. NationalInstituteof TechnologyCalicut, 2010.
[2] M. Comesaña, A. P.Soares, M.Perea, A.P. Piñeiro, I. Fraga, and A. Pinheiro, “ Author ’ s personal copy Computers in Human Behavior ERP correlates of masked affective priming with emoticons,” Computers in Human Behavior, 29, 588–595, 2013
[3] S.Lohmann, M. Burch, H. Schmauder and D. Weiskopf, “Visual Analysis of Microblog Content Using Time-Varying Co-occurrence Highlighting in Tag Clouds,” Annual conference of VISVISUS. Germany: University of Stuttgart, 2012.
[4] D. Osimo, and F. Mureddu, “Research Challenge on Opinion Mining and Sentiment Analysis,” Proceeding of the 12th conference of Fruct association, 2010, United Kingdom.
[5] A. Pak, and P. Paroubek, “Twitter as a Corpus for Sentiment Analysis and Opinion Mining,” Special Issue of International Journal of Computer Application, France: Universitede Paris-Sud, 2010.
[6] M.Rambocas, and J. Gama, “Marketing Research: The Role of Sentiment Analysis”. The 5th SNA-KDD Workshop’11. Universityof Porto, 2013.
[7] H. Saif, Y.He, and H. Alani, “SemanticSentimentAnalysisof Twitter,” Proceeding of the Workshop on Information Extraction and Entity Analytics on Social Media Data. United Kingdom: Knowledge Media Institute, 2011.
[8]P.Lai,“ExtractingStrongSentimentTrendfromTwitter”. Stanford University, 2012.
[9] Y. Zhou, and Y. Fan, “A Sociolinguistic Study of American Slang,” Theory and Practice in Language Studies, 3(12), 2209–2213, 2013. doi:10.4304/tpls.3.12.2209-2213
[10] A.H.Huang, D.C. Yen, & X. Zhang, “Exploring the effects of emoticons,” Information & Management, 45(7), 466–473, 2008.
[11] D. Boyd, S. Golder & G. Lotan, “Tweet, tweet, retweet: Conversational aspects of retweeting on twitter,” System Sciences (HICSS),2010.
[12] Fox C. (1992). "Information retrieval data structures and algorithms". Lexical Analysis and Stoplists, pp.102–130, 1992.
[13] Go A, Bhayani R, & Huang L. "Twitter sentiment classification using distant supervision". CS224N Project Report, Stanford, 2009
[14] Saif H, He Y, & Alani H. "Alleviating Data Sparsity for Twitter Sentiment Analysis". In Proc. CEUR Workshop Proceedings, 2012.
[15] A. Bakliwal, P. Arora, S. Madhappan, N. Kapre, M. Singh, & V. Varma. "Mining sentiments from tweets". In Proc. the 3rd Workshop in Computational Approaches to Subjectivity and Sentiment Analysis, Association for Computational Linguistics, Jeju, Korea, pp.11–18, 2012.
[16] Saif H, Fern M, & He Y. "Evaluation Datasets for Twitter Sentiment Analysis A survey and a new dataset the STS-Gold". Proc. 1st ESSEM Workshop. Turin, Italy, 2013.
[17] Sascha Narr, Michael Hulfenhaus & Sahin Albayrak. "Language-Independent Twitter Sentiment Analysis." 2014.
[18] V. Nareyko, “Why python is perfect for startups,”
[19] H.M.Wallach,“Topic modeling: beyond bag-of-words,” in Proceedings of the 23rd International Conference on Machine Learning (ICML `06), pp. 977–984, Pittsburgh, Pa, USA, June 06.
[20] A. Sweigart, “Invent your own computer games with Python. 2nd edition, 2012.
[21] C. Seberino, “Python. Faster and easier software development,” Annual Conference. California: San Diego, 2012.
[22] A.Lukaszewski, “MySQL for Python. Integrate the flexibility of Python and the power of MySQL to boost the productivity of your applications,” UK: Birningham. Packt Publishing Ltd, 2010.
[23] Gimpel, K., Schneider, N., O‘Connor, B., Das, D., Mills, D., Eisenstein, J., etal. ―Part-of-speech tagging for twitter: Annotation, features, and experiments‖. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies: Short papers - volume 2 HLT ‘11,pp. 42–47,2011.
[24] P. Bhoir, S. Kolte, “Sentiment Analysis of Movie Reviews using Lexicon approach”, IEEE International Conference on Computational Intelligence and Computing Research, Madurai pp.1-6, 2015.