A novel segmentation method for classification of Diseased and Healthy Maize and Paddy Leaves Using OCLBP
T. Harisha Naik1 , M. Suresha2
Section:Research Paper, Product Type: Journal Paper
Volume-6 ,
Issue-12 , Page no. 330-334, Dec-2018
CrossRef-DOI: https://doi.org/10.26438/ijcse/v6i12.330334
Online published on Dec 31, 2018
Copyright © T. Harisha Naik, M. Suresha . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: T. Harisha Naik, M. Suresha, “A novel segmentation method for classification of Diseased and Healthy Maize and Paddy Leaves Using OCLBP,” International Journal of Computer Sciences and Engineering, Vol.6, Issue.12, pp.330-334, 2018.
MLA Style Citation: T. Harisha Naik, M. Suresha "A novel segmentation method for classification of Diseased and Healthy Maize and Paddy Leaves Using OCLBP." International Journal of Computer Sciences and Engineering 6.12 (2018): 330-334.
APA Style Citation: T. Harisha Naik, M. Suresha, (2018). A novel segmentation method for classification of Diseased and Healthy Maize and Paddy Leaves Using OCLBP. International Journal of Computer Sciences and Engineering, 6(12), 330-334.
BibTex Style Citation:
@article{Naik_2018,
author = {T. Harisha Naik, M. Suresha},
title = {A novel segmentation method for classification of Diseased and Healthy Maize and Paddy Leaves Using OCLBP},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {12 2018},
volume = {6},
Issue = {12},
month = {12},
year = {2018},
issn = {2347-2693},
pages = {330-334},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=3338},
doi = {https://doi.org/10.26438/ijcse/v6i12.330334}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i12.330334}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=3338
TI - A novel segmentation method for classification of Diseased and Healthy Maize and Paddy Leaves Using OCLBP
T2 - International Journal of Computer Sciences and Engineering
AU - T. Harisha Naik, M. Suresha
PY - 2018
DA - 2018/12/31
PB - IJCSE, Indore, INDIA
SP - 330-334
IS - 12
VL - 6
SN - 2347-2693
ER -
VIEWS | XML | |
453 | 310 downloads | 264 downloads |
Abstract
In this paper we have proposed a novel segmentation method for classification of diseased and healthy maize and paddy leaves using Opposite Color Local Binary Pattern (OCLBP). The proposed works have been done on the maize and paddy leaves, the dataset has the diseased and healthy leaves, diseased leaves have the yellowish brown patches. Disease in maize and paddy leaves may be due to biotic causes. Generally, leaves spotted with yellow at initial stage and appear bronzed brown color at end stage at its disease levels. The diseased spots are all having color transition from yellow to Bronzed brown color. This yellow to bronzed brown color transition is appeared in between red and green colors of RGB color cube. This color transition motivated us to use OCLBP as a segmentation tool. The OCLBP textured image is the image of segmented diseased part which helps in extract the features. So here considered red color channel against green color channels to get the OCLBP textured image. SVM is used for diseased and heathy leaves classification. We have attempted to introduce the best segmentation, feature selection and dimensionality approaches for image texture which support fast and accurate pattern recognition and object identification.
Key-Words / Index Term
Feature Selection, Local Binary Pattern, Gabor features, OCLBP
References
[1] B. Lee, “ A new method for classification of structural textures”, International Journal of Control, Automation, and Systems, 2(1), 125-133, 2004.
[2] A. HALIMI, A. ROUKHE, & OUHMAD, “ Defect Detection and Identification in Textile Fabric by SVM Method”, IOSR Journal of Engineering (IOSRJEN) Vol. 04,), PP 69-77, 2014.
[3] K. Bahl, & S. Kainth, “ Evaluation of yarn quality in fabric using image processing techniques”, Int. J. Sci. Res, 3, 558-561, 2014.
[4] F.S. Nadaf, N. Kamble, & R. Gadekar, Fabric Fault Detection Using Digital Image Processing, 2017.
[5] X. Zhang, J. Cui, W. Wang, & C. Lin, “ A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm”, Sensors, 17(7), 1474, 2017.
[6] P. Mohanaiah, P. Sathyanarayana, & L. GuruKumar, “ Image texture feature extraction using GLCM approach”, International Journal of Scientific and Research Publications, 3(5), 1, 2013.
[7] A. Ross, & R. Govindarajan, “ Feature level fusion using hand and face biometrics”, In Proceedings of SPIE conference on biometric technology for human identification II (Vol. 5779, pp. 196-204), 2005.
[8] N. Varghese, V. Verghese, P. Gayathri, & N. Jaisankar, “A survey of dimensionality reduction and classification methods”, International Journal of Computer Science and Engineering Survey, 3(3), 45, 2012.
[9] V.B. Shereena, & J.M. David, “SIGNIFICANCE OF DIMENSIONALITY REDUCTION IN IMAGE PROCESSING”, Signal & Image Processing , An International Journal (SIPIJ) Vol.6, No.3, June 2015.
[10] Y. Nan, Q. Feng, & S. Zuolei, “ Image Classification by Feature Dimension Reduction and Graph based Ranking”, arXiv preprint arXiv:1304.2683, 2013.
[11] M. Ponti, T.S. Nazaré & G.S. Thumé, “ Image quantization as a dimensionality reduction procedure in color and texture feature extraction”, Neurocomputing, 173, 385-396, 2016.
[12] I. Guyon, & A. Elisseeff, “ An introduction to variable and feature selection”, Journal of machine learning research, 3(Mar), 1157-1182, 2003.
[13] L. Liu, P. Fieguth, X. Wang, M. Pietikäinen, & D. Hu, “ Evaluation of LBP and deep texture descriptors with a new robustness benchmark”, In European Conference on Computer Vision (pp. 69-86). Springer, Cham, 2016.
[14] P.E. Rauber, R.R.O.D. Silva, S. Feringa, M.E. Celebi, A.X. Falcão, & A.C. Telea, “Interactive image feature selection aided by dimensionality reduction”, Proc. EuroVA, 54-61, 2015.
[15] Z. Sun, X. Yuan, G. Bebis, & S.J. Louis, “ Neural-network-based gender classification using genetic search for eigen-feature selection”, In Neural Networks, Proceedings of the 2002 International Joint Conference on (Vol. 3, pp. 2433-2438). IEEE, 2002.
[16] P. Kushwaha, & R.R. Welekar, “ Feature Selection for Image Retrieval based on Genetic Algorithm”, IJIMAI, 4(2), 16-21, 2016.
[17] T. Ojala, M. Pietik¨ainen, and D. Harwood, “A comparative study of texture measures with classification based on featured distributions,” Pattern Recognition, 29(1), pp 51–59, 1996.
[18] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell., 28(12):2037–2041, 2006.
[19] A. Hadid, M. Pietik¨ainen, and T. Ahonen, “A discriminative feature space for detecting and recognizing faces,” In CVPR (2), 2004, pp 797–804.
[20] G. Zhao and M. Pietik¨ainen, “Dynamic texture recognition using local binary patterns with an application to facial expressions,” IEEE Transaction Pattern Analysis and Machine Intelligence, 29(6): pp 915–928, 2007.
[21] S.D. Newsam and C. Kamath “Retrieval using texture features in high resolution multi-spectral satellite imagery,” SPIE Conference on Data Mining and Knowledge Discovery, 2004.