Travel Route Recommendation System using Big-Multisource Social Media: A Survey
Shital.N.Raul 1 , Nitin N. Patil2
Section:Survey Paper, Product Type: Journal Paper
Volume-6 ,
Issue-12 , Page no. 418-421, Dec-2018
CrossRef-DOI: https://doi.org/10.26438/ijcse/v6i12.418421
Online published on Dec 31, 2018
Copyright © Shital.N.Raul, Nitin N. Patil . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Shital.N.Raul, Nitin N. Patil, “Travel Route Recommendation System using Big-Multisource Social Media: A Survey,” International Journal of Computer Sciences and Engineering, Vol.6, Issue.12, pp.418-421, 2018.
MLA Style Citation: Shital.N.Raul, Nitin N. Patil "Travel Route Recommendation System using Big-Multisource Social Media: A Survey." International Journal of Computer Sciences and Engineering 6.12 (2018): 418-421.
APA Style Citation: Shital.N.Raul, Nitin N. Patil, (2018). Travel Route Recommendation System using Big-Multisource Social Media: A Survey. International Journal of Computer Sciences and Engineering, 6(12), 418-421.
BibTex Style Citation:
@article{Patil_2018,
author = {Shital.N.Raul, Nitin N. Patil},
title = {Travel Route Recommendation System using Big-Multisource Social Media: A Survey},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {12 2018},
volume = {6},
Issue = {12},
month = {12},
year = {2018},
issn = {2347-2693},
pages = {418-421},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=3354},
doi = {https://doi.org/10.26438/ijcse/v6i12.418421}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i12.418421}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=3354
TI - Travel Route Recommendation System using Big-Multisource Social Media: A Survey
T2 - International Journal of Computer Sciences and Engineering
AU - Shital.N.Raul, Nitin N. Patil
PY - 2018
DA - 2018/12/31
PB - IJCSE, Indore, INDIA
SP - 418-421
IS - 12
VL - 6
SN - 2347-2693
ER -
VIEWS | XML | |
371 | 291 downloads | 196 downloads |
Abstract
In the era of internet, social media has become a big boom for Internet users. These users used to share their day-to-day activities on social media sites like Facebook, Twitter, Flicker and so on. Different data gets uploaded related to users activities like check-ins, GPS locations, tagging friends, travel routes, shopping, dining and photos. The comfort of user convenience has resulted in tremendously increased user count of the Internet. Simultaneously, it is also leading to building of information as a huge database of places, routes, services etc. Considering these all things, our targeted work is to build an enhanced travel advisory and recommendation system. Such a system gives complete freedom to users for choosing their suitable trip options. The users gets able to fetch complete information like statistics of users visited given place, available facilities and most importantly preferred travel routes. All this information can have associated cost options for ease of decision-making. With the help of social media activities like recommendations, likes/dislikes, posts, shares, tags and check-in information, it can build automatic trip advisor to provide better travelling experience with cost-saving and user convenient features. This diverse database can provide features like text-based and pictorial search module. Thus the available maps and locations help users to synchronize their actions with existing routes along with probable route restructuring functionality. Also uses can use the combination of skyline representative concepts and keyword extraction module for appropriate decision making to choose the best place from multiple Places-of Interest (POIs).
Key-Words / Index Term
Recommendation System, Decision Making, User Convenience, Keyword Extraction, Skyline Representative
References
[1]. Y. Arase, X. Xie, T. Hara, and S. Nishio. "Mining people’ strip from large scale geo-tagged photos". In Proceedings of the 18th ACM international conference on Multimedia, pages 133–142. ACM, 2010.
[2]. X. Cao, L. Chen, G. Cong, and X. Xiao. Keyword-aware optimal route search. Proceedings of the VLDB Endowment, 5(11):1136–1147, 2012.
[3]. H. Yin, B. Cui, Y. Sun, Z. Hu, and L. Chen. LCARS: A spatial item recommender system. ACM Transactions on Information Systems (TOIS), 32(3):11, 2014.
[4]. D. Chen, C. S. Ong, and L. Xie. Learning points and routes to recommend trajectories. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pages 2227–2232, 2016.
[5]. M. Clements, P. Serdyukov, A. De Vries, and M. Reinders ,Using Flicker Geo Tag To Predict User Travel Behavior, In proceeding of the 33rd International ACMSIGIR Conference Research Development Information Retrieval, 2010
[6]. D. Chen, C. S. Ong, and L. Xie,” Learning Points And Routes To Recommend Trajectories.” In Proceedings of the 25th ACM International Conference On Information And Knowledge Management, 2016
[7]. B. Zheng, N. J. Yuan, K. Zheng, X. Xie, S. Sadiq , and X. Zhou, “Approximate Keyword Search In Semantic Trajectory Database” In Data Engineering (ICDE), IEEE 31st International Conference,2015.
[8]. W. T. Hsu, Y. T. Wen, L. Y. Wei, and W. C. Peng, -Skyline travel routes: Exploring skyline for trip planning,‖ in Proceed. IEEE 15th Int. Conf. Mobile Data Manage., 2014, pp. 31–36.
[9]. X. Cao, G. Cong, and C. S. Jensen. Mining significant semantic locations from GPS data. Proceedings of the VLDB Endowment, 1009–1020, 2010.
[10]. A. Kapadia, F. Adu-Oppong, C. K. Gardiner, and P. P. Tsang, “Social circles: Tackling privacy in social networks,” in Proc. Symp. Usable Privacy Security, 2008.
[11]. X. Li, J. Han, J. Lee, and H. Gonzalez, “Traffic density-based discovery of hot routes in road networks,” Advances in Spatial and Temporal Databases, pp. 441–459, 2007.
[12]. D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere, M. Potamias, K. Mouratidis, and T. Sellis, “On-line discovery of hot motion paths,” in EDBT, 2008, pp. 392–403.
[13]. J. Patel and D. DeWitt, “Partition based spatial-merge join,” ACM SIGMOD Record, vol. 25, no. 2, pp. 259–270, 1996.