Open Access   Article Go Back

All-Optical Linear Binary Code Generator Using Optical Nonlinear Material Based Devices

Ashis Kumar Mandal1

Section:Research Paper, Product Type: Journal Paper
Volume-6 , Issue-12 , Page no. 642-656, Dec-2018

CrossRef-DOI:   https://doi.org/10.26438/ijcse/v6i12.642656

Online published on Dec 31, 2018

Copyright © Ashis Kumar Mandal . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Ashis Kumar Mandal, “All-Optical Linear Binary Code Generator Using Optical Nonlinear Material Based Devices,” International Journal of Computer Sciences and Engineering, Vol.6, Issue.12, pp.642-656, 2018.

MLA Style Citation: Ashis Kumar Mandal "All-Optical Linear Binary Code Generator Using Optical Nonlinear Material Based Devices." International Journal of Computer Sciences and Engineering 6.12 (2018): 642-656.

APA Style Citation: Ashis Kumar Mandal, (2018). All-Optical Linear Binary Code Generator Using Optical Nonlinear Material Based Devices. International Journal of Computer Sciences and Engineering, 6(12), 642-656.

BibTex Style Citation:
@article{Mandal_2018,
author = {Ashis Kumar Mandal},
title = {All-Optical Linear Binary Code Generator Using Optical Nonlinear Material Based Devices},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {12 2018},
volume = {6},
Issue = {12},
month = {12},
year = {2018},
issn = {2347-2693},
pages = {642-656},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=3392},
doi = {https://doi.org/10.26438/ijcse/v6i12.642656}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i12.642656}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=3392
TI - All-Optical Linear Binary Code Generator Using Optical Nonlinear Material Based Devices
T2 - International Journal of Computer Sciences and Engineering
AU - Ashis Kumar Mandal
PY - 2018
DA - 2018/12/31
PB - IJCSE, Indore, INDIA
SP - 642-656
IS - 12
VL - 6
SN - 2347-2693
ER -

VIEWS PDF XML
234 172 downloads 165 downloads
  
  
           

Abstract

The transmission of information occurs simultaneously over the same available channel bandwidth in Code Division Multiple Access (CDMA) technique. The spread spectrum (SS) technique is employed in CDMA systems for transmission of information by employing spreading codes. A unique spreading code, acts as a signature code, is assigned for each individual user. The signal occupies a bandwidth much larger than the minimum necessary to send the information in SS modulation technique. A synchronized reception with the code at the receiver is applied for dispreading the information before data recovery. From a long-term, Walsh-Hadamard codes have been employed as spread spectrum codes in CDMA communications due to their ease of generation than the efficiency of these codes. Walsh-Hadamard codes are absolutely orthogonal linear binary codes which have so many favorite applications in synchronous multicarrier communications though they perform poorly for asynchronous multi-user communications. Now, the optical application of these Walsh-Hadamard codes is important for optical CDMA. In these designs nonlinear optical property is exploited for capable of controlling multi-valued signals. To this purpose, it is proposed with exploiting the polarization properties of light an all-optical design of Walsh-Hadamard codes generator in this paper.

Key-Words / Index Term

Optical nonlinear material, Optical switches, Polarization converter, Polarization converter mask, Walsh-Hadamard code

References

[1] D. Woods & T.J. Naughton, Photonic neural networks. Nature Physics, 8, doi: 10.1038/nphys2283, 257 (2012).
[2] B. M. Popovic, “Spreading sequences for multicarrier CDMA systems,” IEEE Trans. Communication., vol. 47, no. 5, pp. 918 (1999).
[3] H.J. Caulfield, S. Dolev & W.M.J. Green, Appl. Opt. A, 48 (Optical High-Performance Computing feature issue), http://dx.doi.org/10.1364/AO.48.0OHPC1 (2009).
[4] S. P. Maity, M. Mukherrjee, “On Optimization of CI/MC-CDMA System”, In: 20th IEEE Personal, Indoor and Mobile Radio Comm. Symp., Japan, pp. 3203 (2009).
[5] T. Reed, G. Mashanovich, F.Y. Gardes & D.J. Thomson, Silicon optical modulators. Nature Photonics, 4, doi:10.1038/nphoton.2010.179, 518 (2010).
[6] G. W. Wornell, “Spread-signature CDMA: Efficient multi-user comm-unication in the presence of fading,” IEEE Trans. Inform. Theory, vol. 41, no. 5, pp. 1418 (1995).
[7] H.J. Caulfield & S. Dolev, Why future supercomputing requires optics. Nature Photonics, 4, doi:10.1038/nphoton.2010.94, 262 (2010)
[8] C. Taraphdar, T. Chattopadhyay & J.N. Roy, Designing of Polarization encoded all-optical ternary multiplexer and Demultiplexer. Recent Patents on Signal Processing, 1(2), 143, doi:10.2174/1877612411101020143 (2011).
[9] J. Li, L. Li, L. Jin and C. Li, “All-optical switch and limiter based on nonlinear polarization in Mach-Zehnder interferometer coupled with a polarization maintaining fiberring resonator,” Optics Communication, vol.260, pp.318 (2006).
[10] T. Chattopadhyay, J.N. Roy & A.K. Chakraborty, Polarization encoded alloptical quaternary R-S flip-flop using binary latch. Optics Communications, 282, 1287-1293, DOI:10.1016/j.optcom.2008.12.022 (2009).
[11] C. Ji, R. G. Broeke, Y. Du, J. Cao, N. Chubun, P. Bjeletich, F. Olsson, S. Lourdudoss, R. Welty, C. Reinhardt, P. L. Stephan, and S. J. B. Yoo, "Monolithically integrated InP based photonic chip development for O-CDMA systems," IEEE J. Select. Topics Quantum Electron, vol. 11, pp. pp66 (2005).
[12] S. Liu, C. Li, J. Wu and Y. Liu, “Optoelectronic multiple-valued logic implementation,” Optics Letters, vol.14(14), pp.713 (1989).
[13] G. Eichmann, Y. Li and R. R. Alfano, “Optical binary coded ternary arithmetic and logic,” Applied Optics, vol.25(18), pp.3113 (1986).
[14] G. K. Maity, S. P. Maity and J. N. Roy, “All-Optical Manchester Code Generator using TOAD-based D Flip-Flop,” ICDCS (2012).
[15] G.K. Maity & S.P. Maity, Realization of Orthogonal Codes in Optical Information Processing, IEEE International Conference on Emerging Applications of Information Technology, 978-1-4673-1827, 307 (2012).
[16] G. K. Maity, S. P. Maity and J. N. Roy, “TOAD-based All-Optical Gold Code Generator,” ICDCS (2012) .
[17] G. Shvets, Optical polarsizer/isolator based on a rectangular waveguide with helical grooves, arxiv:physics/0606206v1 [physics.Optics], 1 (2006).
[18] J. P. Sokoloff, P. R. Prucnal, I. Glesk, M. Kane, A terahertz optical asymmetric demultiplexer (TOAD), IEEE Photon. Techno. Lett. 5 (7), 787-789, 1993.
[19] J. P. Sokoloff, I. Glesk, P. R. Prucnal, R. K. Boneck, Performance of a 50 Gbit/s Optical Time Domain Multiplexed System Using a Terahertz Optical Asymmetric Demultiplexer, IEEE Photon. Techno. Lett.6 (1), 98-100, 1994.
[20] Y.K.Huang, I.Glesk, R.Shankar, P.R.Prucnal, Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD, Optics Express, 14(22), 10339-10344, 2006.
[21] Z.Y. Shen and L. L. Wu, Reconfigurable optical logic unit with a terahertz optical asymmetric demultiplexer and electro-optic switches, Appl. Opt. 47(21), 3737-3742, 2008.
[22] B.C. Wang, V. Baby, W. Tong, L. Xu, M. Friedman, R.J. Runser, I. Glesk, P. R. Pruncnal, A novel fast optical switch based on two cascaded Terahertz Asymmetric Demultiplexers(TOAD), Optics Express 10(1), 15-23, 2002.
[23] Y. J. Jung, S. Lee, N. Park, All-optical 4-bit gray code to binary coded decimal converter, Optical Components and Materials, Proceedings of the SPIE, Volume 6890, 68900S, 2008.
[24] J.N.Roy, D.K.Gayen, Integrated all-optical logic and arithmetic operations with the help of TOAD based interferometer device – alternative approach, Appl. Opt. 46(22), 5304-5310, 2007.
[25] J. N. Roy, G. K. Maity, D. Gayen, T. Chattopadhyay, Terahertz Optical Asymmetric Demultiplexer based tree-net architecture for all-optical conversion scheme from binary to its other 2n radix based form, Chinese Optics Letter 6(7), 536-540, 2008.
[26] R. Menzel, Photonics Linear and Nonlinear Interactions of Laser Light and Matter (Springer-Verleg, Barlin, Heidelberg, Chap. 4 (2006).
[27] G.S. He, Prog. Quantum Electron. 26 (3) (2002) 131.
[28] A. Yariv, D.M. Pepper, Opt. Lett. 1 (1) (1977) 16.
[29] A.W. Lohmann, Polarization and optical logic, Applied Optics, 25, 1594 (1988).
[30] J.M. Tang, & K.A. Shore, Strong picosecond optical pulse propagating in semiconductor optical amplifiers at transparency. IEEE Journal of Quantum Electronics, 34(7), 1263-1269, doi: 10.1109/3.687871 (1998).
[31] A.W. Domanski, Polarization degree fading during propagation of partially coherent light through retarders. Opto-Electronics Review, 7th International Workshop on Nonlinear Optics applications, 13(2), 171 (2005).
[32] S.L. Hurst, Multiple-Valued Logic-Its Status and its Future, IEEE Transactions on computers, C-33(12), 1160, Doi:10.1109/TC.1984.1676392 (1984).
[33] F. Bruyere & O. Andouin, Penalties in long-haul optical amplifiers systems due to polarization dependent loss and gain. IEEE Photonics Tech. Letters, 6(5), 654, doi: 10.1109/68.285570 (1994).
[34] L.E. Nelson, T.N. Nielson & H. Kogelnik, Observation of PMD-induced coherent crosstalk in polarization-multiplexed transmission. IEEE photonics tech. letter, 13(7), 738, DOI:10.1109/68.930432 (2001).
[35] A. Mecozzi & M. Shtaif, ‘The statistics of polarization dependent loss in optical communication systems’. IEEE photonics tech. letter, 14(3), 313, DOI: 10.1109/68.986797 (2002).
[36] T. Chattopadhyay, G. K. Maity, J. N. Roy, “Designing of all-optical tri-state logic system with the help of optical nonlinear material,” Journal of Nonlinear Optical Physics and Materials, vol.17, No. 3, 315 (2008).
[37] J.L. Walsh, A closed set of normal orthogonal functions. American Journal of Mathematics, 45(1), 5 (1923).
[38] F. Bruyere & O. Andouin, O ‘Penalties in long-haul optical amplifiers systems due to polarization dependent loss and gain’. IEEE Photonics Tech. Letters, 6(5), 654, doi: 10.1109/68.285570 (1994).