Open Access   Article Go Back

A Blended Biometric Approach Using Matching Score Level Architecture

K. Divya1 , K. G. R. Narayan2 , V. Ramachandran3 , R. Eswariah4

Section:Research Paper, Product Type: Journal Paper
Volume-6 , Issue-12 , Page no. 777-780, Dec-2018

CrossRef-DOI:   https://doi.org/10.26438/ijcse/v6i12.777780

Online published on Dec 31, 2018

Copyright © K. Divya, K. G. R. Narayan, V. Ramachandran, R. Eswariah . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: K. Divya, K. G. R. Narayan, V. Ramachandran, R. Eswariah, “A Blended Biometric Approach Using Matching Score Level Architecture,” International Journal of Computer Sciences and Engineering, Vol.6, Issue.12, pp.777-780, 2018.

MLA Style Citation: K. Divya, K. G. R. Narayan, V. Ramachandran, R. Eswariah "A Blended Biometric Approach Using Matching Score Level Architecture." International Journal of Computer Sciences and Engineering 6.12 (2018): 777-780.

APA Style Citation: K. Divya, K. G. R. Narayan, V. Ramachandran, R. Eswariah, (2018). A Blended Biometric Approach Using Matching Score Level Architecture. International Journal of Computer Sciences and Engineering, 6(12), 777-780.

BibTex Style Citation:
@article{Divya_2018,
author = {K. Divya, K. G. R. Narayan, V. Ramachandran, R. Eswariah},
title = {A Blended Biometric Approach Using Matching Score Level Architecture},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {12 2018},
volume = {6},
Issue = {12},
month = {12},
year = {2018},
issn = {2347-2693},
pages = {777-780},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=3414},
doi = {https://doi.org/10.26438/ijcse/v6i12.777780}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i12.777780}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=3414
TI - A Blended Biometric Approach Using Matching Score Level Architecture
T2 - International Journal of Computer Sciences and Engineering
AU - K. Divya, K. G. R. Narayan, V. Ramachandran, R. Eswariah
PY - 2018
DA - 2018/12/31
PB - IJCSE, Indore, INDIA
SP - 777-780
IS - 12
VL - 6
SN - 2347-2693
ER -

VIEWS PDF XML
427 281 downloads 179 downloads
  
  
           

Abstract

This paper aims at security authentication for an unmanned surveillance system. The system takes the Face image, impressions of a person’s finger and images of eyes and prepares a database. A blended biometric approach is followed for calculating the weighted average of scores appraised from the three most trivial biometric traits, Face, Eye and Finger impressions. The features are extracted from the pre-processed images of iris, face and finger impressions.The details of a probing image are to be matched with the database we have .the individual details obtained after tallying are sent to the fusion module. This module consists of three major steps i.e., Pre-Processing, Discrete Wavelet Transformation and Image fusion. At the final phase the hidden key Analysis approach is followed to authenticate the subject under investigation.

Key-Words / Index Term

Biometric Identity, IRIS Recognition, Finger print, Face Recognition, DWT, WAMS

References

[1] Hiren D. Joshi, “A Multimodal Biometric Authentication System for Person Identification and Verification using Fingerprint and Face Recognition” International Journal of Computer Applications (0975 – 8887) Volume 51– No.17, August 2012
[2] R. W. Picard, “Content access for image/video coding: “The Fourth Criterion”,” Tech. Rep. 295, MIT Media Lab, Perceptual Computing, Cambridge, MA, 1994.
[3] R. Brunelli, Template Matching Techniques in Computer Vision: Theory and Practice, Wiley, ISBN 978-0-470-51706-2, 2009
[4] Perlovsky L. I. et.al., Neural Networks and Intellect: Using Model-Based Concepts. New York, NY: Oxford University Press; (3rd printing), 2001.
[5] Crawford, Mark. "Facial recognition progress report". SPIE Newsroom. Retrieved 2011-10- 06.
[6] Liu Y, Simon JD (February 2005). "Metal-ion interactions and the structural organization of Sepia eumelanin". Pigment Cell Res. 18 (1): 42–8. doi:10.1111/j.1600-0749.2004.00197.x. PMID 15649151.
[7] HRSID Iris Recognition | "more than 200 points that can be used for comparison, including rings, furrows and freckles" "Iris scanners `can be tricked`". "Biometric Identity Management System". UNHCR. Retrieved 2015-11-02.
[8] Wasserman, Philip (2005-12-26). "Solid-State Fingerprint Scanners - A Survey of Technologies" (PDF). Retrieved 2015-10-18.
[9] Setlak, Dale. "Advances in Biometric Fingerprint Technology are Driving Rapid Adoption in Consumer Marketplace". AuthenTec. Retrieved 4 November 2010. M. N. Do, M. Vetterli, (2005) “The contourlet transform: an efficient directional multiresolution image representation”, IEEE Transactions on Image Processing, Vol. 14, No. 12, pp. 2091-2106.
[10] Liu, Z., Blasch, E., Xue, Z., Langaniere, R., and Wu, W., (2012). Objective Assessment of Multiresolution Image Fusion Algorithms for Context Enhancement in Night Vision: A Comparative Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1), 94-109.
[11] Martin, Zach (2011-03-23). "Biometric Trends: Will emerging modalities and mobile applications bring mass adoption?". SecureIDNews. Retrieved 2013-07-14
[12] "Biometric Identity Management System". UNHCR. Retrieved 2015-11-02.
[13] Wasserman, Philip (2005-12-26). "Solid-State Fingerprint Scanners - A Survey of Technologies" (PDF). Retrieved 2015-10-18.
[14] Hosseini, M.S.; Araabi, B.N.; Soltanian-Zadeh, H. (April 2010). "Pigment Melanin: Pattern for Iris Recognition". IEEE Trans Instrum Meas 59 (4): 792–804. doi:10.1109/TIM.2009.2037996