Comparative Performance Study of Optimal Interval Type-2 Fuzzy PID Controllers with Practical System
Ritu Rani De (Maity)1 , Rajani K. Mudi2 , Chanchal Dey3
Section:Research Paper, Product Type: Journal Paper
Volume-8 ,
Issue-3 , Page no. 1-6, Mar-2020
CrossRef-DOI: https://doi.org/10.26438/ijcse/v8i3.16
Online published on Mar 30, 2020
Copyright © Ritu Rani De (Maity), Rajani K. Mudi , Chanchal Dey . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Citation
IEEE Style Citation: Ritu Rani De (Maity), Rajani K. Mudi , Chanchal Dey, “Comparative Performance Study of Optimal Interval Type-2 Fuzzy PID Controllers with Practical System,” International Journal of Computer Sciences and Engineering, Vol.8, Issue.3, pp.1-6, 2020.
MLA Citation
MLA Style Citation: Ritu Rani De (Maity), Rajani K. Mudi , Chanchal Dey "Comparative Performance Study of Optimal Interval Type-2 Fuzzy PID Controllers with Practical System." International Journal of Computer Sciences and Engineering 8.3 (2020): 1-6.
APA Citation
APA Style Citation: Ritu Rani De (Maity), Rajani K. Mudi , Chanchal Dey, (2020). Comparative Performance Study of Optimal Interval Type-2 Fuzzy PID Controllers with Practical System. International Journal of Computer Sciences and Engineering, 8(3), 1-6.
BibTex Citation
BibTex Style Citation:
@article{(Maity)_2020,
author = {Ritu Rani De (Maity), Rajani K. Mudi , Chanchal Dey},
title = {Comparative Performance Study of Optimal Interval Type-2 Fuzzy PID Controllers with Practical System},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {3 2020},
volume = {8},
Issue = {3},
month = {3},
year = {2020},
issn = {2347-2693},
pages = {1-6},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=5041},
doi = {https://doi.org/10.26438/ijcse/v8i3.16}
publisher = {IJCSE, Indore, INDIA},
}
RIS Citation
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v8i3.16}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=5041
TI - Comparative Performance Study of Optimal Interval Type-2 Fuzzy PID Controllers with Practical System
T2 - International Journal of Computer Sciences and Engineering
AU - Ritu Rani De (Maity), Rajani K. Mudi , Chanchal Dey
PY - 2020
DA - 2020/03/30
PB - IJCSE, Indore, INDIA
SP - 1-6
IS - 3
VL - 8
SN - 2347-2693
ER -
![]() |
![]() |
![]() |
839 | 753 downloads | 284 downloads |




Abstract
In this paper, the input and output scaling factors of the type-2 fuzzy PID Controller (IT2-FPID) are determined using three different optimization algorithms (Cuckoo search (CS), Particle swarm optimization (PSO), and Bee colony algorithm (BCA)) for a first-order integrating plus dead time (FOIPD) model. A comparative performance study is made for these three optimization algorithms in terms of various transient performance indices. The comparative analysis on the experimental results reveals that BCA based optimal IT2-FPID shows better performance on a simulation model whereas CS based optimal IT2-FPID is found to be superior for practical system over other algorithms.
Key-Words / Index Term
Particle swarm optimization(PSO), Cuckoo search algorithm (CS), Bee colony algorithm(BCA), Interval type-2 fuzzy controller.
References
[1]
Thana
Radpukdee " Sliding Mode Control with
PID Tuning Technique: An Application to a DC Servo Motor Position
Tracking Control", Energy Research Journal 1 (2), pp. 55-61, 2010
[2]
Mohd
Fua’ad Rahamat & Mariam md Ghazaly, “Performance Comparison between PID And
Fuzzy Logic Controller in position Control System of DC Servomotor”, Jurnal
Teknologi Malayshia, 45(D), pp. 1-17, 2006.
[3]
S.
Bandyopadhyay, A. Das, “Emphasis on Genetic Agorithm (GA) over Different PID
Tuning Methods of Controlling Servo System Using MATLAB”, International Journal
of Scientific Research in Computer Sciences and Engineering, Vol. 1, Issue-3,
pp. 8-13, 2013.
[4]
L. A. Zadeh, “The concept of a linguistic variable and its
application to approximate reasoning—1”, Information Science, Vol. 8, 199–249,
1975
[5]
A. Yadav, V.K. Harit, “Fault identification in Sub-station by
Using Neuro-Fuzzy Technique”, International Journal of Scientific Research in
Computer Science and Engineering ,Vol-4, Issue-6, pp.-1-7,2016.
[6]
E.
Ontiveros-Robles, P. Melin, O. Castillo, “Comparative Analysis of Noise
Robustness of Type-2 Fuzzy Logic Controller”, Kybernetika,Vol. 54, No. 1,pp. 175-201, 2018.
[7]
B.
Sakalli, T. Kumbasar, “On the design and gain analysis of IT2-FPID with a case
study on an electric vehicle”, IEEE
International Conference on Fuzzy Systems, Vol.25, No.6, pp. 1752-1764, 2017.
[8]
H.
A. Hagras, “A hierarchical Type-2 fuzzy logic control architecture for
autonomous mobile robots”, IEEE Trans. Fuzzy Syst., Vol. 12, No. 4, pp.
524–539,2004.
[9]
D.
Türkay, A. Baykasoglu, K. Altun, A. Durmusoglu, B. Türksen, “Industrial
applications of type-2 fuzzy sets and systems: A concise review”, Computers in Industry; 62(1),
pp.125-137, 2011.
[10] N. N. Karnik, and
J. M. Mendel, “Introduction to type-2 fuzzy logic systems”, Proceedings of IEEE
International Conference on Fuzzy Systems, Vol. 2 pp. 915-920, 1998.
[11] J. M. Mendel,
“Uncertain rule-based fuzzy logic systems: introduction and new directions”,
Prentice-Hall, New Jersey, 2001
[12]
J.
Mendel and R. John, "Type-2 Fuzzy Sets Made Simple," IEEE
Transactions on Fuzzy Systems, vol. 10, pp.1 17-127, April 2002.
[13] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set”,
In-form. Sci., vol. 132, pp. 195–220, 2001
[14]
W.Z.
Qiao, M. Mizumoto, “PID type fuzzy controller and parameters adaptive
method.Fuzzy Sets and Systems”, 78(1),pp. 23–35, 1996.
[15]
E Yesil, T Kumbasar, F Dodurka, and A
Sakalli, “Peak observer based self-tuning type-2 fuzzy PID controllers”, In Proc. International
Conference on Artificial Intelligence Applications and Innovations AIAI, pp.
487-497, 2014.
[16] Ali Al-Waily,
R.S., “Design of Robust Mixed H2/H∞ PID Controller
Using Particle Swarm Optimization”, International Journal of Advancements in
Computing Technology 2(5), pp.53–60, 2010.
[17]
O.
Castillo, L. Amador-Angulo, “A generalized type-2 fuzzy logic approach for
dynamic parameter adaptation in bee colony optimization applied to fuzzy
controller design”, Information Sciences, Volumes 460-461, pp. 476-496, 2017.
[18]
M.
Konar, A. Bagis, “Performance Comparison of Particle Swarm Optimization,
Differential Evolution and Artificial Bee Colony Algorithms for Fuzzy Modelling
of Nonlinear Systems”, Elektron.
Elektrotech, Vol. 22, pp. 8-13,
2016.
[19]
J.
Kennedy, and R.C. Eberhart, “Particle swarm optimization”, in: Proc. of IEEE
International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948,
1995.
[20]
D.
Karaboga, B. Basturk, “On the performance of artificial bee colony (ABC)
algorithm”, Applied Soft Computing, Vol. 8, pp. 689-697, 2008.
[21]
X.S.
Yang , S. Deb, “ Cuckoo Search ViaLevy flights”, In Nature & Biologically
Inspired Computing, 2009, World Congress on (IEEE 2009), pp. 210–214,2009.
[22]
Documentation
for the USER MANUAL Quanser QUBE-Servo-2, Ontario, Canada, 2016
[23]
R.
Palm, “Sliding mode fuzzy control”, Proc. IEEE Int. Conf. on Fuzzy Systems –
FUZZ-IEEE, pp. 519-526,1992.