Open Access   Article Go Back

Data Mining and Phylogenetic Analysis of NifH Protein of Azospirillum strain among Nitrogen-fixing Bacteria using Bioinformatics Tools

Saurabh Sindhu1 , Divya Sindhu2 , S.K. Yadav3

Section:Research Paper, Product Type: Journal Paper
Volume-9 , Issue-1 , Page no. 1-10, Jan-2021

CrossRef-DOI:   https://doi.org/10.26438/ijcse/v9i1.110

Online published on Jan 31, 2021

Copyright © Saurabh Sindhu, Divya Sindhu, S.K. Yadav . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Saurabh Sindhu, Divya Sindhu, S.K. Yadav, “Data Mining and Phylogenetic Analysis of NifH Protein of Azospirillum strain among Nitrogen-fixing Bacteria using Bioinformatics Tools,” International Journal of Computer Sciences and Engineering, Vol.9, Issue.1, pp.1-10, 2021.

MLA Style Citation: Saurabh Sindhu, Divya Sindhu, S.K. Yadav "Data Mining and Phylogenetic Analysis of NifH Protein of Azospirillum strain among Nitrogen-fixing Bacteria using Bioinformatics Tools." International Journal of Computer Sciences and Engineering 9.1 (2021): 1-10.

APA Style Citation: Saurabh Sindhu, Divya Sindhu, S.K. Yadav, (2021). Data Mining and Phylogenetic Analysis of NifH Protein of Azospirillum strain among Nitrogen-fixing Bacteria using Bioinformatics Tools. International Journal of Computer Sciences and Engineering, 9(1), 1-10.

BibTex Style Citation:
@article{Sindhu_2021,
author = {Saurabh Sindhu, Divya Sindhu, S.K. Yadav},
title = {Data Mining and Phylogenetic Analysis of NifH Protein of Azospirillum strain among Nitrogen-fixing Bacteria using Bioinformatics Tools},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {1 2021},
volume = {9},
Issue = {1},
month = {1},
year = {2021},
issn = {2347-2693},
pages = {1-10},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=5287},
doi = {https://doi.org/10.26438/ijcse/v9i1.110}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v9i1.110}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=5287
TI - Data Mining and Phylogenetic Analysis of NifH Protein of Azospirillum strain among Nitrogen-fixing Bacteria using Bioinformatics Tools
T2 - International Journal of Computer Sciences and Engineering
AU - Saurabh Sindhu, Divya Sindhu, S.K. Yadav
PY - 2021
DA - 2021/01/31
PB - IJCSE, Indore, INDIA
SP - 1-10
IS - 1
VL - 9
SN - 2347-2693
ER -

VIEWS PDF XML
701 345 downloads 169 downloads
  
  
           

Abstract

Development of prediction tools for computational identification of nitrogen fixation (nif) genes and categorization of potential diazotrophs using high throughput sequence data has accelerated the research in the area of biological nitrogen fixation. The computational tools are recently being used for the annotation and phylogenetic analysis of nifH gene or NifH protein sequences in nitrogen-fixing bacteria. In this study, phylogenetic analysis of NifH protein using Maximum Likelihood method showed that amino acid sequences of Azospirillum brasilense showed more relatedness to Rhodospirillum rubrum and Rhodobacter capsulatus. Further, the amino acid sequences also showed similarity to nodule-forming bacteria Rhizobium etli, Rhizobium leguminosarum bv. trifolii and Sinorhizobium meliloti. Azospirillum brasilense was placed on the same clade along with Rhodopseudomonas palustris, Methylobacterium nodulans, Gluconoacetobacter diazotrophicus and Zymomonas mobilis based on NifH aminoacid sequences. On another branch, NifH amino acid sequences of Azospirillum brasilense showed relatedness to Bradyrhizobium diazoefficiens, Azorhizobium claudinodans and Acidothiobacillus ferrooxidans. However, amino acid sequences of free-living nitrogen-fixing bacteria Klebsiella pneumoniae, Azotobacter vinelanii and Azotobacter chroococcum were also placed separately on other branch. Interestingly, sequences of anaerobic bacteria Clostridium pasteurianum, Desulfatomaculum reducens and Chlorobium limicola were placed far apart. Besides this, NifH amino acid sequences of Azospirillum brasilense showed quite divergence from the sequences observed in Paenibacillus durus and Roseiflexus castenholzii. Thus, NifH amino acid sequences classified various nitrogen-fixing bacteria into different phylogenetic clusters.

Key-Words / Index Term

NifH protein, Amino acids, Phylogenetic analysis, Azospirillum, Nitrogen fixation, Bioinformatics

References

[1] J. Raymond, J.L. Siefert, C.R. Staples et al., “Environmental history of nitrogen fixation”. Molecular Biology Evolution, Vol. 21, pp. 541-554, 2004.
[2] J. Kim, D.C. Rees, “Nitrogenase and biological nitrogen fixation”, Biochemistry, Vol. 33, pp. 389-397, 1994.
[3] J.P.W. Young, “Phylogenetic classification of nitrogen-fixing organisms”, in Biological Nitrogen Fixation, G. Stacey, R.H. Burris, H.J. Evans (eds.). New York: Chapman & Hall. pp. 43–86, 1992.
[4] P.M. Vitousek, J.D. Aber, R.W. Howarth, G.E. Likens, P.A. Matson, D.W. Schindler, W.H. Schlesinger, D.G. Tilman, “Human alteration of global nitrogen cycle: sources and consequences”. Ecology Applications, Vol. 7, pp. 737–750, 1997.
[5] C.C. Cleveland, A.R. Townsend, D. S. Schimel, et al., “Global patterns of terrestrial biological nitrogen (N2) fixation in environmental ecosystems”, Global Biogeochem. Cycles, Vol. 13, pp. 623-645, 1999.
[6] I.R. Kennedy, N. Islam, “Current and potential contribution of asymbiotic nitrogen fixation to nitrogen requirements on farms: review”, Australian Journal of Experimental Agriculture, Vol. 41, pp. 447-457, 2001.
[7] B.B. Bohlool, J.K. Ladha, D.P. Garrity, T. George, “Biological nitrogen fixation for sustainable agriculture: perspective”, Plant and Soil, Vol. 141, pp. 1-11, 1992.
[8] D.R. Dean, M.R. Jacobson, “Biochemical genetics of nitrogenase”, In: Biological Nitrogen Fixation, G. Stacey, R.H. Burris, H.J. Evans (eds.). Chapman-Hall, NewYork, pp. 763-831, 1992.
[9] Q. Li, X. Liu, H. Zhang, S. Chen, “Evolution and functional analysis of orf1 within nif gene cluster from Paenibacillus graminis RSA19”, International Journal of Molecular Sciences, Vol. 20, pp. 1145, 2019. doi:10.3390/ijms20051145
[10] T.L. Hamilton, M. Ludwig, R. Dixon, E.S. Boyd, P.C. Dos Santos, J. C. Setubal et al., “Transcriptional profiling of nitrogen fixation in Azotobacter vinelandii”, Journal of Bacteriology, Vol. 193, pp. 4477–4486, 2011. doi: 10.1128/JB.05099-11
[11] I. Frank, “Rapid classification of NifH protein sequences using classification and regression trees”, M. Sc. dissertation, University of California, Santacruz, 2014.
[12] I. Frank, K.A. Turk-Kubo, J. P. Zehr, “Rapid annotation of nifH gene sequences using classification and regression trees facilitates environmental functional gene analysis”, Environmental Microbiological Reports, Vol. 8, No. 5, pp. 905–916, 2016.
[13] U.K. Mondal, B. Das, T.C. Ghosh, A. Sen, A. K. Bothra, “Nucleotide triplet based molecular phylogeny of class I and class II aminoacyl t-RNA synthetase in three domain of life process: bacteria, archaea and eukarya”, Journal of Biomolecular Structure Dynamics, Vol. 26, article no. 321328, 2008. doi: 10.1080/07391102.2008.10507247
[14] P.K. Meher, T.K. Sahu, J. Mohanty, S. Gahoi, S. Purru, M. Grover, A.R. Rao, “nifPred: proteome-wide identification and categorization of nitrogen fixation proteins of diazotrophs based on composition-transition-distribution features using support vector machine”, Frontiers in Microbiology, Vol. 9, pp. 1-16, 2018.
[15]P.C. Dos Santos, Z. Fang, S. Mason, J.C. Setuba, R. Dixon, “Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes”, BMC Genomics, Vol. 13, pp. 162, 2012.
[16] M.A. Marti-Renom, A.C. Stuart, A. Fiser, R. Sanchez, F. Melo, A. Sali, “Comparative protein structure modeling of genes and genomes”, Annuual Review of Biophysics and Biomolecular Structures, Vol. 29, pp. 291, 2000.
[17] J.P. Zehr, B.D. Jenkins, S.M. Short, G.F. Steward, “Nitrogenase gene diversity and microbial community structure: cross–system comparison”, Environonmental Microbiology, Vol. 5, pp. 539-554, 2003.
[18]L.F.W. Roesch, F.A.O. Camargo, F.M. Bento, et al., “Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize”, Plant and Soil, Vol. 302, pp. 91–104, 2008.
[19] J.C. Gaby, D.H. Buckley, “Global census of nitrogenase diversity”, Environmental Microbiology, Vol. 13, pp. 1790–1799, 2011.
[20] J.C. Gaby, D.H. Buckley, “Comprehensive aligned nifH gene database: multipurpose tool for studies of nitrogen-fixing bacteria”, Database 2014:bau001, 2014.
[21] P. Heller, H.J. Tripp, K. Turk-Kubo, J.P., Zehr, “ARBitrator: a software pipeline for on-demand retrieval of auto-curated nifH sequences from GenBank”, Bioinformatics, Vol. 30, pp. 2883–2890, 2014.
[22] M.C.Y. Lau, C. Cameron, C. Magnabosco, C.T. Brown, F. Schilkey, S. Grim, S. Hendrickson, M. Pullin et al., “Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships”, Frontiers in Microbiology, Vol. 5, pp. 1-17, 2014.
[23]J.T.L. Wang, M.J. Zaki, H.T.T. Toivonen, D. Shasha, “Data Mining in Bioinformatics”, Springer, 2005.
[24]J. Felsenstein, “Evolutionary trees from DNA sequences: Maximum likelihood approach”, Journal of Molecular Biology, Vol. 17, pp. 368, 1981.
[25]B. Chor, T. Tuller, “Maximum likelihood of evolutionary trees: hardness and approximation”, Bioinformatics, Vol. 21 (Suppl 1), pp. 97-106, 2005.
[26]S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman, “Gapped BLAST and PSI-BLAST: new generation of protein database search programs”, Nucleic Acids Research, Vol. 25, pp. 3389, 1997.
[27]Sayers, E.W., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., Dicuccio, M., Edgar, R., Federhen, S., et al., “Database resources of National Center for Biotechnology Information”, Nucleic Acids Research, Vol. 38, pp. D5–D16, 2010.
[28]Y. Okon, C.A. Labandera-Gonzalez, M. Lage, P. Lage, “Agronomic applications of Azospirillum and other PGPR”, In: Biological nitrogen fixation, F.J. de Brujin, (ed). Hoboken: Wiley, Chapter 90, 2015.
[29] Y. Okon, C.A. Labandera-Gonzalez, “Agronomic applications of Azospirillum: evaluation of 20 years worldwide field inoculation”, Soil Biology and Biochemistry, Vol. 26, pp. 1591–1601, 1994.
[30] A. Behar, B. Yuval, E. Jurkevitch, “Enterobacteria- mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata”, Molecular Ecology, Vol. 14, 2637-2643, 2005.
[31] J.C. Gaby, L. Rishishwar, L.C. Valderrama-Aguirre, S.J. Green, A. Valderrama-Aguirre, K. Jordan, J.E. Kostkaa, “Diazotroph community characterization via high-throughput nifH amplicon sequencing and analysis pipeline”, Applied and Environmental Microbiology, Vol. 84, Issue 4, e01512-17, 2018.
[32] D. Higgins, J.D. Thompson, D.G. Higgins, T.J. Gibson, “CLUSTALW: Improving sensitivity of progressive multiple sequence alignment through sequence weighing, position-specific gap penalities and weight matrix choice”, Nucleic Acids Research, Vol. 22, pp. 4673-4680, 1994.
[33] Y. Bashan, G. Holguin, L.E. de-Bashan, “Azospirillum-plant relationships: physiological, molecular, agricultural and environmental advances (1997–2003)”, Canadian Journal of Microbiology, Vol. 50, pp. 521-577, 2004.
[34] L. Pereg, E. Luz, Y. Bashan, “Assessment of affinity and specificity of Azospirillum for plants”, Plant and Soil, Vol. 399, pp. 389–414, 2016.
[35] Q.-C. Choo, M.-R. Samian, N. Najimudin, “Phylogeny and characterization of three nifH-homologous genes from Paenibacillus azotofixans”, Applied and Environmental Microbiology, Vol. 69, No. 6, pp. 3658–3662, 2003.
[36] E.S. Boyd, A.M.G. Costas, T.L. Hamilton, F. Mus, J.W. Peters, “Evolution of molybdenum nitrogenase during transition from anaerobic to aerobic metabolism”, Journal of Bacteriology, Vol. 197, pp. 1690–1699, 2015.
[37] B. Reinhold-Hurek, T. Hurek “Life in grasses: diazotrophic endophytes”, Trends in Microbiology, Vol. 6, pp. 139–144, 1998.
[38] J.I. Baldani, V.L.D. Baldani, “History on biological nitrogen fixation research in graminaceous plants: special emphasis on Brazilian experience”, Annals of Academy Brasilean Ciênc, Vol. 77, pp. 549–579, 2005.
[39] L.S. Hartmann, S.R. Barnum, “Inferring evolutionary history of Mo-dependent nitrogen fixation from phylogenetic studies of nifK and nifDK”, Journal of Molecular Evolution, Vol. 71, pp. 70-85, 2010
[40]D. Sindhu, S. Sindhu, “Image processing technology application for early detection and classification of plant diseases”, International Journal of Computer Science and Engineering, Vol. 7, Issue 5, pp. 92-97, 2019