Judgment Robotically Mining Facets for Requests from Their Exploration Consequences
N. Bhanu Prakash1 , E. Kesavulu Reddy2
Section:Research Paper, Product Type: Journal Paper
Volume-9 ,
Issue-10 , Page no. 24-27, Oct-2021
CrossRef-DOI: https://doi.org/10.26438/ijcse/v9i10.2427
Online published on Oct 31, 2021
Copyright © N. Bhanu Prakash, E. Kesavulu Reddy . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: N. Bhanu Prakash, E. Kesavulu Reddy, “Judgment Robotically Mining Facets for Requests from Their Exploration Consequences,” International Journal of Computer Sciences and Engineering, Vol.9, Issue.10, pp.24-27, 2021.
MLA Style Citation: N. Bhanu Prakash, E. Kesavulu Reddy "Judgment Robotically Mining Facets for Requests from Their Exploration Consequences." International Journal of Computer Sciences and Engineering 9.10 (2021): 24-27.
APA Style Citation: N. Bhanu Prakash, E. Kesavulu Reddy, (2021). Judgment Robotically Mining Facets for Requests from Their Exploration Consequences. International Journal of Computer Sciences and Engineering, 9(10), 24-27.
BibTex Style Citation:
@article{Prakash_2021,
author = {N. Bhanu Prakash, E. Kesavulu Reddy},
title = {Judgment Robotically Mining Facets for Requests from Their Exploration Consequences},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {10 2021},
volume = {9},
Issue = {10},
month = {10},
year = {2021},
issn = {2347-2693},
pages = {24-27},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=5407},
doi = {https://doi.org/10.26438/ijcse/v9i10.2427}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v9i10.2427}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=5407
TI - Judgment Robotically Mining Facets for Requests from Their Exploration Consequences
T2 - International Journal of Computer Sciences and Engineering
AU - N. Bhanu Prakash, E. Kesavulu Reddy
PY - 2021
DA - 2021/10/31
PB - IJCSE, Indore, INDIA
SP - 24-27
IS - 10
VL - 9
SN - 2347-2693
ER -
VIEWS | XML | |
423 | 340 downloads | 152 downloads |
Abstract
Web look inquiries are regularly questionable or multi-faceted, which makes a straightforward positioned rundown of results deficient. To help data finding for such faceted inquiries, we investigate a system that unequivocally speaks to intriguing aspects of an inquiry utilizing gatherings of semantically related terms separated from list items. For instance, for the inquiry "stuff remittance", these gatherings may be distinctive aircrafts, diverse flight types (household, global), or diverse travel classes (first, business, economy). We name these gatherings inquiry aspects and the terms in these gatherings feature terms. We build up a regulated methodology dependent on a graphical model to perceive inquiry features from the boisterous hopefuls found. The graphical model figures out how likely a competitor term is to be a feature term just as how likely two terms are to be assembled together in a question aspect, and catches the conditions between the two elements. We propose two calculations for estimated surmising on the graphical model since correct derivation is immovable. Our assessment consolidates review and exactness of the aspect terms with the gathering quality. Trial results on an example of web questions demonstrate that the directed technique fundamentally beats existing methodologies, which are generally unsupervised, proposing that inquiry feature extraction can be adequately learned.
Key-Words / Index Term
Query, Facet, Faceted Search, Query Suggestion, Query Reformulation, Query Summarization
References
[1] .E. Stoica and M. A. Hearst, “Nearly-automated metadata hierarchy creation,” in HLT-NAACL 2004: Short Papers, pp. 117–120, 2004.
[2]. O. Ben-Yitzhak, N. Golbandi, N. Har’El, R. Lempel, A. Neumann,S. Ofek-Koifman, D. Sheinwald, E. Shekita, B. Sznajder, and S.Yogev, “Beyond basic faceted search,” in Proc. Int. Conf. Web Search Data Mining, pp. 33–44, 2008.
[3]. M. Diao, S. Mukherjea, N. Rajput, and K. Srivastava, “Faceted search and browsing of audio content on spoken web,” in Proc.19th ACM Int. Conf. Inf. Knowl. Manage., pp. 1029–1038, 2010.
[4]. D. Dash, J. Rao, N. Megiddo, A. Ailamaki, and G. Lohman, “Dynamic faceted search for discovery-driven analysis,” in ACM Int. Conf. Inf. Knowl. Manage., pp. 3–12, 2008.
[5]. M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. “Web tables: exploring the power of tables on the web,” VLDB, :538–549, August 2008.
[6]. T. Cheng, X. Yan, and K. C.-C. Chang. “Supporting entity search a large-scale prototype search engine,” In Proceedings of SIGMOD ’07, pages 1144–1146, 2007.
[7]. H. Zhang, M. Zhu, S. Shi, and J.-R. Wen,” Employing topic models for pattern-based semantic class discovery,” In Proceedings of ACL-IJCNLP ’09, 2009.
[8] Y. Hu, Y. Qian, H. Li, D. Jiang, J. Pei, and Q. Zheng, “Mining query subtopics from search log data”, In Proceedings of SIGIR ’ 12, pages 305–314, 2012.
[9]. Weize Kong ,“Extending Faceted Search to the Open-Domain Web”, ACM SIGIR Forum Vol. 50 No. 1 June 2016.
[10]. L. Bing, W. Lam, T.-L. Wong, and S. Jameel, “Web query reformulation via joint modeling of latent topic dependency and term con- text,” ACM Trans. Inf. Syst., vol. 33, no. 2, pp. 6:1– 6:38, eb. 2015.
[11]. R. Baeza-Yates, C. Hurtado, and M. Mendoza, “Query recommendation uses query logs in search engines,” in Proc. Int. Conf. Cur- rent Trends Database Technol., pp. 588–596, 2004.
[12].I. Szpektor, A. Gionis, and Y. Maarek, “Improving recommendation for long-tail queries via templates,” in Proc. 20th Int.Conf. World Wide Web, pp. 47–56, 2011.
[13]. L. Li, L. Zhong, Z. Yang, and M. Kitsuregawa, “Qubic: An adaptive approach to query-based recommendation,” J. Intell Inf. Syst., vol. 40, no. 3, pp. 555–587, Jun. 2013.
[14]. Z. Zhang and O. Nasraoui, “Mining search engine query logs for query recommendation,” in Proc. 15th Int. Conf. World Wide Web, pp. 1039–1040, 2006.
[15]. Zhicheng Dou, Zhengbao Jiang, Sha Hu, Ji-Rong Wen, and Ruihua Song,” Automatically Mining Facets for Queries from Their Search Results”, IEEE Transactions On Knowledge And Data Engineering, Vol. 28, No. 2, February 2016.
[16]. Pratiksha Gopale, Prof. Bhagwan Kurhe,” Survey on Search Result Based Mining Facet for Queries,” International Journal of Innovative Research in Computer and Communication Engineering, Vol. 5, Issue1, January 2017.
[17]. Sunita Sarawagi, Shiby Thomas, Rakesh Agrawal,” integrating Association rule mining with relational database systems, Proceedings of the 1998 ACM SIGMOD International conference on Management of data, Volume 27 Issue 2.
[18] D. Mirela, G.Stefan, T. PentiucIolanda. Mining Association Rules Inside a Relational Database – A Case Study. The Sixth International Multi-Conference on Computing in the Global Information Technology (ICCGI 2011). June 19-24, 2011 Luxembourg.14-19.