Deep Learning Based Detection Approaches on Skin Cancer Detection: A Review
Su Myat Thwin1
- Dept. of Computer Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
Section:Review Paper, Product Type: Journal Paper
Volume-12 ,
Issue-7 , Page no. 16-23, Jul-2024
CrossRef-DOI: https://doi.org/10.26438/ijcse/v12i7.1623
Online published on Jul 31, 2024
Copyright © Su Myat Thwin . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Su Myat Thwin, “Deep Learning Based Detection Approaches on Skin Cancer Detection: A Review,” International Journal of Computer Sciences and Engineering, Vol.12, Issue.7, pp.16-23, 2024.
MLA Style Citation: Su Myat Thwin "Deep Learning Based Detection Approaches on Skin Cancer Detection: A Review." International Journal of Computer Sciences and Engineering 12.7 (2024): 16-23.
APA Style Citation: Su Myat Thwin, (2024). Deep Learning Based Detection Approaches on Skin Cancer Detection: A Review. International Journal of Computer Sciences and Engineering, 12(7), 16-23.
BibTex Style Citation:
@article{Thwin_2024,
author = {Su Myat Thwin},
title = {Deep Learning Based Detection Approaches on Skin Cancer Detection: A Review},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {7 2024},
volume = {12},
Issue = {7},
month = {7},
year = {2024},
issn = {2347-2693},
pages = {16-23},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=5706},
doi = {https://doi.org/10.26438/ijcse/v12i7.1623}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v12i7.1623}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=5706
TI - Deep Learning Based Detection Approaches on Skin Cancer Detection: A Review
T2 - International Journal of Computer Sciences and Engineering
AU - Su Myat Thwin
PY - 2024
DA - 2024/07/31
PB - IJCSE, Indore, INDIA
SP - 16-23
IS - 7
VL - 12
SN - 2347-2693
ER -
VIEWS | XML | |
150 | 161 downloads | 60 downloads |
Abstract
Skin cancer, one of the most common malignancies worldwide, necessitates early detection for better patient outcomes and efficient treatment. Recent advancements in deep learning have shown significant promise in enhancing the accuracy and efficiency of skin cancer diagnosis. This review comprehensively examines the current state of deep learning-based approaches for skin cancer detection, highlighting key methodologies, datasets, and performance metrics. We explore the integration of Convolutional Neural Networks (CNNs), Transfer Learning, and Attention Mechanisms in dermatological imaging analysis. Additionally, we discuss the impact of modified attention mechanisms, such as spatial and channel attention, in improving model performance by focusing on critical features of skin lesions. The review also addresses challenges related to data quality, class imbalance, and model interpretability. By synthesizing findings from recent studies, this review aims to provide a detailed understanding of how deep learning technologies are transforming skin cancer detection and to identify future research directions that could further enhance diagnostic accuracy and clinical applicability.
Key-Words / Index Term
Deep Learning, Machine Learning, Convolutional Neural Network, Transfer Learning, Attention Mechanism, Skin Cancer Detection
References
[1] X. Jin, J. Ma, Y. Wang, and Z. Li, "Melanoma recognition in dermoscopy images via skin lesion segmentation and multi-scale deep feature learning," Pattern Recognition, Vol.104, pp.107316, 2020.
[2] World Health Organization (WHO). How common is the skin cancer?, 2019.
[3] Cancer Council Australia. “Understanding skin cancer - a guide for people with cancer, their families and friends”, 2018.
[4] Canadian Cancer Society’s Advisory Committee on Cancer Statistics. Canadian cancer statistics 2014 - special topic: Skin cancers, 2014.
[5] L. Rebecca, Siegel, D. M. Kimberly and A. Jemal. “Cancer statistics”, 2019. CA: a cancer journal for clinicians, Vol.69, Issue.1, pp.7–34, 2019.
[6] F. Anthony, J., Jennifer, T. Johnson, C. D. Sheridan, and T.J. Caffrey “Early detection and treatment of skin cancer”. American family physician, Vol.62, Issue.2, 2000.
[7] H. Feng, J. Berk-Krauss, P. W. Feng, and J. A. Stein. “Comparison of dermatologist density between urban and rural counties in the united states”. JAMA dermatology, Vol.154, Issue.11, pp.1265–1271, 2018.
[8] M. S. Richard, X. L. Jenny, Y. Kinfu, and R. Mario Dal Poz. “Forecasting the global shortage of physicians: an economic-and needs-based approach”. Bulletin of the World Health Organization, 86:516–523B, 2008.
[9] F. Ercal, A. Chawla, W. V. Stoecker, H. C. Lee, and R. H. Moss. “Neural network diagnosis of malignant melanoma from color images”. IEEE Transactions on Biomedical Engineering, Vol.41, Issue.9, pp.837–845, 1994.
[10] M. Emre Celebi, Hassan A. Kingravi, Bakhtiyar Uddin, Hitoshi Iyatomi, Y. Alp Aslandogan,William V. Stoecker, and Randy H. Moss. “A methodological approach to the classification of dermoscopy images”, Computerized Medical Imaging and Graphics, Vol.31, Issue.6, pp.362–373, 2007.
[11] P. Wighton, T. K. Lee, H. Lui, David I. McLean, and M. Stella Atkins. “Generalizing common tasks in automated skin lesion diagnosis”, IEEE Transactions on Information Technology in Biomedicine, Vol.15, Issue.4, pp.622–629, 2011.
[12] I. Maglogiannis and K. K. Delibasis. “Enhancing classification accuracy utilizing globules and dots features in digital dermoscopy”. Computer Methods and Programs in Biomedicine, Vol.118, Issue.2, pp.124–133, 2015.
[13] C. Barata, M. E. Celebi, and J. S. Marques. “Improving dermoscopy image classification using color constancy”. IEEE Journal of Biomedical and Health Informatics, Vol.19, Issue.3, pp.1146–1152, 2014.
[14] L. Yu, Hao Chen, Q. Dou, J. Qin, and P.A. Heng. “Automated melanoma recognition in dermoscopy images via very deep residual networks”. IEEE Transactions on Medical Imaging, Vol.36, Issue.4, pp.994–1004, 2017.
[15] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun. “Dermatologist-level classification of skin cancer with deep neural networks”. Nature, 542(7639):115, 2017.
[16] H. A. Haenssle, C. Fink, R. Schneiderbauer, F. Toberer, T. Buhl, A. Blum, A. Kalloo, A. B. H. Hassen, L. Thomas, A. Enk, et al. “Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists”. Annals of Oncology, 29(8):pp.1836–1842, 2018.
[17] T. J. Brinker, A. Hekler, A. H. Enk, J. Klode, A. Hauschild, C. Berking, B. Schilling, S. Haferkamp, D. Schadendorf, T. Holland-Letz, et al. “Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task”. European Journal of Cancer, 113: pp.47–54, 2019.
[18] N. Codella, Q. Bao Nguyen, S. Pankanti, D. Gutman, B. Helba, A. Halpern, and J. Smith. “Deep learning ensembles for melanoma recognition in dermoscopy images”. IBM Journal of Research and Development, 61(4): pp.5–1, 2017.
[19] B. Harangi. “Skin lesion classification with ensembles of deep convolutional neural networks”. Journal of Biomedical Informatics, 86: pp.25–32, 2018.
[20] Z. Yu, X. Jiang, F. Zhou, J. Qin, D. Ni, S. Chen, B. Lei, and T. Wang. “Melanoma recognition in dermoscopy images via aggregated deep convolutional features”. IEEE Transactions on Biomedical Engineering, 66(4): pp.1006–1016, 2019.
[21] S. S. Han, M. S. Kim, W. Lim, G. H. Park, I. Park, and S. E. Chang. “Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm”. Journal of Investigative Dermatology, 138(7): pp.1529– 1538, 2018.
[22] M. Attia, M. Hossny, S. Nahavandi, and A. Yazdabadi. “Skin melanoma segmentation using recurrent and convolutional neural networks”. IEEE 14th International Symposium on Biomedical Imaging, pp.292–296, 2017.
[23] N. Nida, A. Irtaza, A. Javed, M. H. Yousaf, and M. T. Mahmood. “Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy c-means clustering”. International journal of medical informatics, 124: pp.37–48, 2019.
[24] A. Bissoto, "Exploring the Impact of Data Augmentation and Transfer Learning for Skin Lesion Classification," in IEEE Journal of Biomedical and Health Informatics, Vol.24, No.12, pp.3412-3422, 2020.
[25] J. Yap, "Skin Cancer Detection Using Deep Learning-Based Convolutional Neural Network with Multi-Modal Transfer Learning," in Sensors, Vol.21, No.2, pp.433, 2021.
[26] [26] D. Arora, S. Sood, and S. Bhargava, "Skin Cancer Detection Using Deep Learning: A Comparative Study," in Biocybernetics and Biomedical Engineering, Vol.42, No.1, pp.219-231, 2022.
[27] Codella, N. C. F., Rotemberg, V., Tschandl, P., Celebi, M. E., Dusza, S., Gutman, and Halpern, A. (2018). “Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the ISIC”. IEEE Journal of Biomedical and Health Informatics, Vol.23, Issue.2, pp.501-512, 2017.
[28] Tschandl, P., Rinner, C., Apalla, Z., Argenziano, G., Codella, N., Halpern, A., ... & Kittler, H., Human–computer collaboration for skin cancer recognition. Nature Medicine, Vol.26, Issue.8, pp.1229-1234, 2019.
[29] Fu’adah YN, Pratiwi NC, Pramudito MA, Ibrahim N. Convolutional Neural Network (CNN) for automatic skin cancer classification system. In: IOP Conference Series: Materials Science and Engineering. Vol 982. IOP Publishing Ltd; 2020. doi:10.1088/1757-899X/982/1/012005).
[30] Hasan M, Barman S das, Islam S, Reza AW. Skin cancer detection using convolutional neural network. In: ACM international conference proceeding A. Shah, M. Shah, A. Pandya et al. Clinical eHealth 6 (2023) 76–84 83 series. Association for Computing Machinery; pp.254-258, 2019. doi:10.1145/ 3330482.3330525.
[31] Brinker TJ, Hekler A, Utikal JS, et al. “Skin cancer classification using convolutional neural networks: Systematic review. “J Med Internet Res.; 20(10), 2018. https://doi.org/10.2196/11936.
[32] Han SS, Moon IJ, Lim W, et al. “Keratinocytic skin cancer detection on the face using region-based convolutional neural network”. JAMA Dermatol, Vol.156, Issue.1, pp.29–37, 2020.
[33] Raja Subramanian R, Achuth D, Shiridi Kumar P, kumar Reddy KN, Amara S, Chowdary AS. “Skin cancer classification using Convolutional neural networks”. In: Proceedings of the Confluence 2021: 11th International Conference on Cloud Computing, Data Science and Engineering. Institute of Electrical and Electronics Engineers Inc.; pp.13-19, 2021.
[34] Zhang N, Cai YX, Wang YY, Tian YT, Wang XL, Badami B. “Skin cancer diagnosis based on optimized convolutional neural network”. Artif Intell Med.;102, 2020. https://doi.org/10.1016/j.artmed.2019.101756.
[35] Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.; HollandLetz, T.; et al. “Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task.” Eur. J. Cancer, 113, pp.47–54, 2019.
[36] Munir, K.; Elahi, H.; Ayub, A.; Frezza, F.; Rizzi, “A. Cancer diagnosis using deep learning: A bibliographic review.” Cancers, 11, 1235, 2019.
[37] Saba, T.; Khan, M.A.; Rehman, A.; Marie-Sainte, S.L. Region Extraction and Classification of Skin Cancer: A Heterogeneous framework of Deep CNN Features Fusion and Reduction. J. Med. Syst., 43, 289, 2019.
[38] Goyal, M.; Oakley, A.; Bansal, P.; Dancey, D.; Yap, M.H. “Skin Lesion Segmentation in Dermoscopic Images with Ensemble Deep Learning Methods”. IEEE Access, 8, pp.4171–4181, 2020.
[39] Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.; Fröhling, S.; et al. “A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task”. Eur. J. Cancer, 111, pp.148–154, 2019.
[40] Mahbod, A.; Schaefer, G.; Wang, C.; Dorffner, G.; Ecker, R.; Ellinger, I. “Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification.” Comput. Methods Programs Biomed., 193, 105475, 2020.
[41] Hekler, A.; Utikal, J.S.; Enk, A.H.; Solass, W.; Schmitt, M.; Klode, J.; Schadendorf, D.; Sondermann, W.; Franklin, C.; Bestvater, F.; et al. “Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images.” Eur. J. Cancer, 118, pp.91–96, 2019.
[42] Adegun, A.; Viriri, S. “Deep learning techniques for skin lesion analysis and melanoma cancer detection: A survey of state-of-theart.” Artif. Intell. Rev., 54, pp.811–841, 2021.
[43] Zhang, N.; Cai, Y.X.; Wang, Y.Y.; Tian, Y.T.; Wang, X.L.; Badami, B. “Skin cancer diagnosis based on optimized convolutional neural network.” Artif. Intell. Med., 102, 101756, 2020.
[44] Albahar, M.A. “Skin Lesion Classification Using Convolutional Neural Network with Novel Regularizer”. IEEE Access, 7, pp.38306–38313, 2019.
[45] Khan, M.A.; Sharif, M.I.; Raza, M.; Anjum, A.; Saba, T.; Shad, S.A. “Skin lesion segmentation and classification: A unified framework of deep neural network features fusion and selection.” Expert Syst., 39, e12497, 2022.
[46] Öztürk, ¸S.; Özkaya, U. Skin Lesion Segmentation with Improved Convolutional Neural Network. J. Digit. Imaging, 33, pp.958–970, 2020.
[47] Gu, Y.; Ge, Z.; Bonnington, C.P.; Zhou, J. “Progressive Transfer Learning and Adversarial Domain Adaptation for Cross-Domain Skin Disease Classification.” IEEE J. Biomed. Health Inform., 24, pp.1379–1393, 2020.
[48] Kaymak, R.; Kaymak, C.; Ucar, A. “Skin lesion segmentation using fully convolutional networks: A comparative experimental study”. Expert Syst. Appl., 161, 113742, 2020.
[49] Khan, M.A.; Akram, T.; Sharif, M.; Javed, K.; Rashid, M.; Bukhari, S.A.C. “An integrated framework of skin lesion detection and recognition through saliency method and optimal deep neural network features selection.” Neural Comput. Appl., 32, pp.15929–15948, 2020.
[50] Anand, V.; Gupta, S.; Koundal, D.; Singh, K. “Fusion of U-Net and CNN model for segmentation and classification of skin lesion from dermoscopy images.” Expert Syst. Appl., 213, 119230, 2023.
[51] Okur, E.; Turkan, M. “A survey on automated melanoma detection”. Eng. Appl. Artif. Intell., 73, pp.50–67, 2018.
[52] Rahman, Z.; Hossain, M.S.; Islam, M.R.; Hasan, M.M.; Hridhee, R.A. “An approach for multiclass skin lesion classification based on ensemble learning.” Inform. Med. Unlocked, 25, 100659, 2021.
[53] Alizadeh, S.M.; Mahloojifar, A. Automatic skin cancer detection in dermoscopy images by combining convolutional neural networks and texture features. Int. J. Imaging Syst. Technol., 31, pp.695–707, 2021.
[54] Shetty, B.; Fernandes, R.; Rodrigues, A.P.; Chengoden, R.; Bhattacharya, S.; Lakshmanna, K. “Skin lesion classification of dermoscopic images using machine learning and convolutional neural network.” Sci. Rep., 12, 18134, 2022.
[55] Abunadi, I.; Senan, E.M. “Deep learning and machine learning techniques of diagnosis dermoscopy images for early detection of skin diseases.” Electronics, 10, 3158, 2021.
[56] Oskal, K.R.; Risdal, M.; Janssen, E.A.; Undersrud, E.S.; Gulsrud, T.O. “A U-net based approach to epidermal tissue segmentation in whole slide histopathological images.” SN Appl. Sci., 1, 672, 2019.
[57] Shetty, B.; Fernandes, R.; Rodrigues, A.P.; Chengoden, R.; Bhattacharya, S.; Lakshmanna, K. “Skin lesion classification of dermoscopic images using machine learning and convolutional neural network.” Sci. Rep., 12, 18134, 2022.
[58] Nasr-Esfahani, E.; Rafiei, S.; Jafari, M.H.; Karimi, N.; Wrobel, J.S.; Samavi, S.; Soroushmehr, S.M.R. “Dense pooling layers in fully convolutional network for skin lesion segmentation.” Comput. Med. Imaging Graph., 78, 101658, 2019.
[59] Amin, J.; Sharif, A.; Gul, N.; Anjum, M.A.; Nisar, M.W.; Azam, F.; Bukhari, S.A.C. “Integrated design of deep features fusion for localization and classification of skin cancer.” Pattern Recognit. Lett., 131, pp.63–70, 2020.
[60] Spyridonos, P.; Gaitanis, G.; Likas, A.; Bassukas, I.D. A convolutional neural network based system for detection of actinic keratosis in clinical images of cutaneous field cancerization. Biomed. Signal Process. Control, 79, 104059, 2023.
[61] Iqbal, S.; Qureshi, A.N.; Mustafa, G. Hybridization of CNN with LBP for Classification of Melanoma Images. Comput. Mater. Contin., 71, pp.4915–4939, 2022.
[62] Al-masni, M.A.; Kim, D.H.; Kim, T.S. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput. Methods Programs Biomed., 190, 105351, 2020.
[63] Mahbod, A.; Schaefer, G.; Ellinger, I.; Ecker, R.; Pitiot, A.; Wang, C. Fusing fine-tuned deep features for skin lesion classification. Comput. Med. Imaging Graph., 71, pp.19–29, 2019.
[64] Sara Medhat, Hala Abdel-Galil, Amal Elsayed Aboutabl, Hassan Saleh, “Skin cancer diagnosis using convolutional neural networks for smartphone images: A comparative study”, Journal of Radiation Research and Applied Sciences, pp.262–267, 2022.
[65] S. Mane, S. Shinde, “Different Techniques for Skin Cancer Detection Using Dermoscopy Images”, Published 31 December 2017. DOI:10.26438/IJCSE/V5I12.159163.