Isolated Word Recognition System for Hindi Language
Suman K. Saksamudre1 , R. R. Deshmukh2
Section:Research Paper, Product Type: Journal Paper
Volume-3 ,
Issue-7 , Page no. 110-114, Jul-2015
Online published on Jul 30, 2015
Copyright © Suman K. Saksamudre, R. R. Deshmukh . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Citation
IEEE Style Citation: Suman K. Saksamudre, R. R. Deshmukh , “Isolated Word Recognition System for Hindi Language,” International Journal of Computer Sciences and Engineering, Vol.3, Issue.7, pp.110-114, 2015.
MLA Citation
MLA Style Citation: Suman K. Saksamudre, R. R. Deshmukh "Isolated Word Recognition System for Hindi Language." International Journal of Computer Sciences and Engineering 3.7 (2015): 110-114.
APA Citation
APA Style Citation: Suman K. Saksamudre, R. R. Deshmukh , (2015). Isolated Word Recognition System for Hindi Language. International Journal of Computer Sciences and Engineering, 3(7), 110-114.
BibTex Citation
BibTex Style Citation:
@article{Saksamudre_2015,
author = {Suman K. Saksamudre, R. R. Deshmukh },
title = {Isolated Word Recognition System for Hindi Language},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {7 2015},
volume = {3},
Issue = {7},
month = {7},
year = {2015},
issn = {2347-2693},
pages = {110-114},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=584},
publisher = {IJCSE, Indore, INDIA},
}
RIS Citation
RIS Style Citation:
TY - JOUR
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=584
TI - Isolated Word Recognition System for Hindi Language
T2 - International Journal of Computer Sciences and Engineering
AU - Suman K. Saksamudre, R. R. Deshmukh
PY - 2015
DA - 2015/07/30
PB - IJCSE, Indore, INDIA
SP - 110-114
IS - 7
VL - 3
SN - 2347-2693
ER -
![]() |
![]() |
![]() |
2619 | 2493 downloads | 2570 downloads |




Abstract
Speech is a natural mode of communication for people. So people are so comfortable with speech recognition systems. The overall performance of any speech recognition system is highly depends on the feature extraction technique and classifier. In this paper, we presented Isolated Word Recognition System for Hindi Language using MFCC as feature extraction and KNN as pattern classification technique. The system is trained for 10 different Hindi words. The experimental result of our system is that it gives 89% accuracy rate.
Key-Words / Index Term
Pattern Recognition, Automatic Speech Recognition (ASR), DCT, FFT
References
[1] Hemakumar, Punitha, “Speech Recognition Technology: A Survey on Indian languages”, International Journal of Information Science and Intelligent System, Vol. 2, No.4, 2013.
[2] Santosh V. Chapaneri , “Spoken Digits Recognition using Weighted MFCC and Improved Features for Dynamic Time Warping”, International Journal of Computer Applications, Vol. 40– No.3, February 2012.
[3] M. A. Anusuya, S.K. Katti, “Speech Recognition by Machine: A Review”, (IJCSIS) International Journal of Computer Science and Information Security, Vol. 6, No. 3, 2009.
[4] Abhishek Thakur, Naveen Kumar, “Automatic Speech Recognition System for Hindi Utterance with Regional Indian Accents: A Review”, International Journal of Electronics & Communication Technology, Vol. 4, April – June 2013.
[5] Pruthi, T., Saksena, S. and Das, P. K. 2000. Swaranjali:Isolated Word Recognition for Hindi Language using VQ and HMM,” Paper Presented at International Conference on Multimedia Processing and Systems(ICMPS), IIT Madras, India.
[6] Kumar, K. and Aggarwal, R. K. 2011. Hindi Speech Recognition System using HTK, International Journal of Computing and Business Research, vol. 2, issue 2.
[7] Mishra, A. N. et al., 2012. Robust Features for Connected Hindi digits Recognition, Int. Journal of Signal Processing, Image Processing and pattern Recognition, Vol. 4, No. 2.
[8] Sinha, S, Agrawal, S. S. and Jain, A. 2013. Continuous density Hidden Morkov Model for context dependent Hindi speech recognition, Int. Conference on Advances in Computing, Communication and Informatics (ICACCI), pp. 1953-1958, IEEE.
[9] Aggarwal, R. K. and Dave, M. 2011. Using Gaussian mixture for Hindi Speech Recognition System, International Journal of Signal Processing, Image Processing and pattern Recognition, SERSC Korea, vol.4, no. 4.
[10] Louis-Marie Aubert, Roger Woods, Scott Fischaber, and Richard Veitch “Optimization of Weighted Finite State Transducer for Speech Recognition”, IEEE Transactions on Computers, Vol. 62, No. 8, August 2013.
[11] Ankit Kumar, Mohit Dua, Tripti Choudhary, “Continuous Hindi Speech Recognition Using Monophone based Acoustic Modeling”, International Journal of Computer Applications 2014.
[12] S B Harisha , S Amarappa , Dr. S V Sathyanarayana, “Automatic Speech Recognition - A Literature Survey on Indian languages and Ground Work for Isolated Kannada Digit Recognition using MFCC and ANN”, International Journal of Electronics and Computer Science Engineering.
[13] Borde, Prashant, Amarsinh Varpe, Ramesh Manza, and Pravin Yannawar. "Recognition of isolated words using Zernike and MFCC features for audio visual speech recognition." International Journal of Speech Technology.2015.
[14] Anand Vardhan Bhalla, Shailesh Khaparkar “Performance Improvement of Speaker Recognition System”, International Journal of Advanced Research in Computer Science and Software Engineering, Vol 2, March 2012.
[15] Munish Bhatia1, Navpreet Singh2, Amitpal Singh, “Speaker Accent Recognition by MFCC Using KNearest Neighbour Algorithm: A Different Approach”, International Journal of Advanced Research in Computer and Communication Engineering, Vol. 4, Issue 1, January 2015
[16] Mel Frequency Cepstral Coefficient (MFCC) tutorial, Accessed 24 June 2015.
[17] Rajesh Kumar Aggarwal, “Improving Hindi Speech Recognition Using Filter Bank Optimization and Acoustic Model Refinement”PHD Thesis, 2012.
[18] M. Kalamani, Dr. S. Valarmathy, S. Anitha , “Automatic Speech Recognition using ELM and KNN Classifiers”, International Journal of Innovative Research in Computer and Communication Engineering, Vol. 3, Issue 4, April 2015.
[19] Tsang-Long Pao, Wen-Yuan Liao and Yu-Te Chen, “A Weighted Discrete KNN Method for Mandarin Speech and Emotion Recognition”, International Journal of Innovative Computing, Information and Control ICIC International Volume 6, February 2010.
[20] http://www.fon.hum.uva.nl/praat/manual/kNN_classifiers_1__What_is_a_kNN_classifier_.html, accessed 25 June 2015.
[21] Tsang-Long Pao, Wen-Yuan Liao and Yu-Te Chen, “A Weighted Discrete KNN Method for Mandarin Speech and Emotion Recognition”, www.intechopen.com.