Open Access   Article Go Back

DDoS Attacks: Trends, Mitigation Strategies, and Future Directions

Amit Dogra1 , Taqdir 2

Section:Research Paper, Product Type: Journal Paper
Volume-11 , Issue-01 , Page no. 221-230, Nov-2023

Online published on Nov 30, 2023

Copyright © Amit Dogra, Taqdir . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Amit Dogra, Taqdir, “DDoS Attacks: Trends, Mitigation Strategies, and Future Directions,” International Journal of Computer Sciences and Engineering, Vol.11, Issue.01, pp.221-230, 2023.

MLA Style Citation: Amit Dogra, Taqdir "DDoS Attacks: Trends, Mitigation Strategies, and Future Directions." International Journal of Computer Sciences and Engineering 11.01 (2023): 221-230.

APA Style Citation: Amit Dogra, Taqdir, (2023). DDoS Attacks: Trends, Mitigation Strategies, and Future Directions. International Journal of Computer Sciences and Engineering, 11(01), 221-230.

BibTex Style Citation:
@article{Dogra_2023,
author = {Amit Dogra, Taqdir},
title = {DDoS Attacks: Trends, Mitigation Strategies, and Future Directions},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {11 2023},
volume = {11},
Issue = {01},
month = {11},
year = {2023},
issn = {2347-2693},
pages = {221-230},
url = {https://www.ijcseonline.org/full_spl_paper_view.php?paper_id=1437},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.ijcseonline.org/full_spl_paper_view.php?paper_id=1437
TI - DDoS Attacks: Trends, Mitigation Strategies, and Future Directions
T2 - International Journal of Computer Sciences and Engineering
AU - Amit Dogra, Taqdir
PY - 2023
DA - 2023/11/30
PB - IJCSE, Indore, INDIA
SP - 221-230
IS - 01
VL - 11
SN - 2347-2693
ER -

           

Abstract

Distributed Denial of Service (DDoS) attacks pose significant threats to online services and networks by overwhelming targeted systems with malicious traffic. This paper provides a comprehensive review of DDoS attacks and explores various mitigation strategies employed by organizations to defend against these attacks. The study focuses on recent developments in attack techniques and discusses the effectiveness of different mitigation approaches. By understanding the evolving landscape of DDoS attacks and the corresponding countermeasures, organizations can enhance their resilience and minimize the impact of such attacks.

Key-Words / Index Term

DDOS, mitigation strategies, characteristics, traffic, attacks, countermeasures

References

[1]. Aamir, M., & Ali Zaidi, S. M. (2021). Clustering based semi-supervised machine learning for DDoS attack classification. Journal of King Saud University - Computer and Information Sciences, 33(4), pp.436–446, 2021. https://doi.org/10.1016/J.JKSUCI.2019.02.003
[2]. Alipour, H., Hariri, S., & Al-Nashif, Y. (2020). Anomaly-based Behavior Analysis of DNS traffic. The University of Arizona. 2020.
[3]. Bell, A. J. C., Rogers, M. B., & Pearce, J. M. (2019). The insider threat: Behavioral indicators and factors influencing likelihood of intervention. International Journal of Critical Infrastructure Protection, 24, pp.166–176, 2019. https://doi.org/10.1016/J.IJCIP.2018.12.001
[4]. Cao, Y., Gao, Y., Tan, R., Han, Q., & Liu, Z. (2018a). Understanding internet DDoS Mitigation from academic and industrial perspectives. IEEE Access, 6, pp.66641–66648, 2018. https://doi.org/10.1109/ACCESS.2018.2877710
[5]. Cao, Y., Gao, Y., Tan, R., Han, Q., & Liu, Z. (2018b). Understanding Internet DDoS Mitigation from Academic and Industrial Perspectives. IEEE Access, 6, pp.66641–66648, 2018. https://doi.org/10.1109/ACCESS.2018.2877710
[6]. Behal, S., & Kumar, K. (2016). Trends in Validation of DDoS Research. Procedia Computer Science, 85, pp.7–15, 2016. https://doi.org/10.1016/J.PROCS.2016.05.170
[7]. Beitollahi, H., &Deconinck, G. (2014). ConnectionScore: A statistical technique to resist application-layer DDoS attacks. Journal of Ambient Intelligence and Humanized Computing, 5(3), pp.425–442, 2014. https://doi.org/10.1007/s12652-013-0196-5
[8]. Chinazzi, M., Davis, J. T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Pastore y Piontti, A., Mu, K., Rossi, L., Sun, K., Viboud, C., Xiong, X., Yu, H., Elizabeth Halloran, M., Longini, I. M., &Vespignani, A. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489), pp.395–400, 2020. https://doi.org/10.1126/science.aba9757
[9]. Dipert, R. R. (2010). The ethics of cyberwarfare. Journal of Military Ethics, 9(4), pp.384–410, 2010. https://doi.org/10.1080/15027570.2010.536404
[10]. Dong, S., &Sarem, M. (2020). DDoS Attack Detection Method Based on Improved KNN with the Degree of DDoS Attack in Software-Defined Networks. IEEE Access, 8, pp.5039–5048, 2020. https://doi.org/10.1109/ACCESS.2019.2963077
[11]. Esposito, S., &Principi, N. (2020). To mask or not to mask children to overcome COVID-19. European Journal of Pediatrics, 179(8), 1267–1270. https://doi.org/10.1007/s00431-020-03674-9
[12]. Fan, C., Kaliyamurthy, N. M., Chen, S., Jiang, H., Zhou, Y., & Campbell, C. (2022a). Detection of DDoS Attacks in Software Defined Networking Using Entropy. Applied Sciences (Switzerland), 12(1). https://doi.org/10.3390/app12010370
[13]. Fan, C., Kaliyamurthy, N. M., Chen, S., Jiang, H., Zhou, Y., & Campbell, C. (2022b). Detection of DDoS Attacks in Software Defined Networking Using Entropy. Applied Sciences (Switzerland), 12(1). https://doi.org/10.3390/app12010370
[14]. Gandhi, R., Sharma, A., Mahoney, W., Sousan, W., Zhu, Q., &Laplante, P. (2011). Dimensions of cyber-attacks: Cultural, social, economic, and political. IEEE Technology and Society Magazine, 30(1), 28–38. https://doi.org/10.1109/MTS.2011.940293
[15]. Gaurav, A., & Singh, A. K. (2017). Entropy-score: A Method to Detect DDoS Attack and Flash Crowd. 2017 2Nd Ieee International Conference on Recent Trends in Electronics, Information & Communication Technology (Rteict), pp.1427–1431, 2017.
[16]. Geeksfor geeks. (2021). Slowloris DDOS Attack Tool in Kali Linux - GeeksforGeeks. Website. https://www.geeksforgeeks.org/slowloris-ddos-attack-tool-in-kali-linux/
[17]. Gunduz, M. Z., & Das, R. (2020). Cyber-security on smart grid: threats and potential solutions. Comput. Netw., 169. https://doi.org/10.1016/j.comnet.2019.107094
[18]. Gururaj, H. L., Swathi, B. H., Trupti, R., Darshan, U. R., Rajendra, A. B., &Paramesha, K. (2023). Analysis of Preventive Measures Against DDoS Attacks in Smart Grid. Journal of The Institution of Engineers (India): Series B, 104(1), 297–303. https://doi.org/10.1007/S40031-022-00844-1
[19]. Halloran, A., Roos, N., Hanboonsong, Y., Islind, A. S., Norström, L., ValloHult, H., Olsson, S. R., Vinod Kumar, T. M., & Dahiya, B. (2017). Socio-Technical Interplay in a Two-Sided Market: The Case of Learning Platforms BT - Digital Transformation and Human Behavior. Geographical Journal, 183(1), pp.33–53, 2017.
[20]. Hilbert, E. J. (2013). Living with cybercrime. Network Security, 2013(11), 15–17. https://doi.org/10.1016/S1353-4858(13)70126-0
[21]. Huang, C., Wang, J., Wu, G., & Chen, J. (2020). Mining Web User Behaviors to Detect Application Layer DDoS Attacks. Journal of Software, 9(4). https://doi.org/10.4304/jsw.9.4.985-990
[22]. Huang, X., Du, X., & Song, B. (2020). An effective DDoS defense scheme for SDN. IEEE International Conference on Communications. https://doi.org/10.1109/ICC.2017.7997187
[23]. Irfan Shakeel. (2016). Detection and prevention of DNS anomalies - Infosec Resources. Website. https://resources.infosecinstitute.com/topic/detection-prevention-dns-anomalies/
[24]. Josh Fruhlinger. (2018). The Mirai botnet explained: How IoT devices almost brought down the internet | CSO Online. Cso. https://www.csoonline.com/article/3258748/the-mirai-botnet-explained-how-teen-scammers-and-cctv-cameras-almost-brought-down-the-internet.html
[25]. Kashyap, B., & K. Jena, S. (2012). DDoS Attack Detection and Attacker Identification. International Journal of Computer Applications, 42(1), 27–33. https://doi.org/10.5120/5657-7549
[26]. Kaur, A. (2017). DDOS Attack Detection on Wireless Sensor Network using DSR Algorithm with Cryptography. Ijca, 175(3), pp.16–23, 2017.
[27]. Kaushal, K., &Sahni, V. (2016). Early Detection of DDoS Attack in WSN. International Journal of Computer Applications, 134(13), pp.14–18, 2016.
[28]. Lee, S., Kim, G., & Kim, S. (2021). Sequence-order-independent network profiling for detecting application layer DDoS attacks. Eurasip Journal on Wireless Communications and Networking, 2021(1). https://doi.org/10.1186/1687-1499-2011-50
[29]. Li, Z., Liu, Y., & Jing, Y. (2019). Design of adaptive backstepping congestion controller for TCP networks with UDP flows based on minimax. ISA Trans, 95, 27–34. https://doi.org/10.1016/j.isatra.2019.05.005
[30]. Liu, S., Ba?ar, T., & Srikant, R. (2005). Exponential-RED: a stabilizing AQM scheme for low- and high-speed TCP protocols. IEEE/ACM Trans Netw, 13(5), 1068–1081. https://doi.org/10.1109/tnet.2005.857110
[31]. Mansfield-Devine, S. (2016). DDoS goes mainstream: how headline-grabbing attacks could make this threat an organisation’s biggest nightmare. Network Security, 2016(11), 7–13. https://doi.org/10.1016/S1353-4858(16)30104-0
[32]. Mašeti?, Z., Ke?o, D., Do?ru, N., &Hajdarevi?, K. (2017). SYN flood attack detection in cloud computing using support vector machine. TEM Journal, 6(4), 752–759. https://doi.org/10.18421/TEM64-15
[33]. McAfee. (2017). Meet IoT_reaper: The New Malware Building a Massive Botnet Army | McAfee Blog. Website. https://www.mcafee.com/blogs/internet-security/iot_reaper/
[34]. Metallo, C., Ferrara, M. A., Lazazzara, A., & Za, S. (n.d.). Digital transformation and human behavior innovation for people and organisations.
[35]. Mirkovic, J., &Reiher, P. (2021). A taxonomy of DDoS attack and DDoS defense mechanisms. In Computer Communication Review (Vol. 34, Issue 2, pp. 39–53). https://doi.org/10.1145/997150.997156
[36]. Mohammed, A. H. K., Jebamikyous, H. H., Nawara, D., &Kashef, R. (2021). IoT cyber-attack detection: A comparative analysis. ACM International Conference Proceeding Series, 117–123. https://doi.org/10.1145/3460620.3460742
[37]. Newman, S. (2019a). Under the radar: the danger of stealthy DDoS attacks. Network Security, 2019(2), 18–19. https://doi.org/10.1016/S1353-4858(19)30025-X
[38]. Newman, S. (2019b). Under the radar: the danger of stealthy DDoS attacks. Network Security, 2019(2), 18–19. https://doi.org/10.1016/S1353-4858(19)30025-X
[39]. Nguyen, T. T., Shieh, C. S., Chen, C. H., &Miu, D. (2021). Detection of unknown DDoS attacks with deep learning and Gaussian mixture model. Proceedings - 2021 4th International Conference on Information and Computer Technologies, ICICT, pp.27–32, 2021.