Density Base Road Accident Control Sensor Monitoring Using Dynamic Network Topology Graph Framework
K. Gowthami1 , S. Vijaya Kumar2
Section:Research Paper, Product Type: Journal Paper
Volume-06 ,
Issue-08 , Page no. 71-76, Oct-2018
CrossRef-DOI: https://doi.org/10.26438/ijcse/v6si8.7176
Online published on Oct 31, 2018
Copyright © K. Gowthami, S. Vijaya Kumar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Citation
IEEE Style Citation: K. Gowthami, S. Vijaya Kumar, “Density Base Road Accident Control Sensor Monitoring Using Dynamic Network Topology Graph Framework,” International Journal of Computer Sciences and Engineering, Vol.06, Issue.08, pp.71-76, 2018.
MLA Citation
MLA Style Citation: K. Gowthami, S. Vijaya Kumar "Density Base Road Accident Control Sensor Monitoring Using Dynamic Network Topology Graph Framework." International Journal of Computer Sciences and Engineering 06.08 (2018): 71-76.
APA Citation
APA Style Citation: K. Gowthami, S. Vijaya Kumar, (2018). Density Base Road Accident Control Sensor Monitoring Using Dynamic Network Topology Graph Framework. International Journal of Computer Sciences and Engineering, 06(08), 71-76.
BibTex Citation
BibTex Style Citation:
@article{Gowthami_2018,
author = {K. Gowthami, S. Vijaya Kumar},
title = {Density Base Road Accident Control Sensor Monitoring Using Dynamic Network Topology Graph Framework},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {10 2018},
volume = {06},
Issue = {08},
month = {10},
year = {2018},
issn = {2347-2693},
pages = {71-76},
url = {https://www.ijcseonline.org/full_spl_paper_view.php?paper_id=478},
doi = {https://doi.org/10.26438/ijcse/v6i8.7176}
publisher = {IJCSE, Indore, INDIA},
}
RIS Citation
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v6i8.7176}
UR - https://www.ijcseonline.org/full_spl_paper_view.php?paper_id=478
TI - Density Base Road Accident Control Sensor Monitoring Using Dynamic Network Topology Graph Framework
T2 - International Journal of Computer Sciences and Engineering
AU - K. Gowthami, S. Vijaya Kumar
PY - 2018
DA - 2018/10/31
PB - IJCSE, Indore, INDIA
SP - 71-76
IS - 08
VL - 06
SN - 2347-2693
ER -




Abstract
The presence of high-end Internet-connected navigation and infotainment systems is becoming a reality that will easily lead to a dramatic growth in bandwidth demand by in-vehicle mobile users. This will induce vehicular users to resort to resource-intensive applications, to the same extent as today’s cellular customers .The research work considers a system where users aboard communication-enabled vehicles are interested in downloading different contents from Internet-based servers. This scenario captures many of the infotainment services that vehicular communication is envisioned to enable, including news reporting, navigation maps, and software updating, or multimedia file downloading. The project outlines the performance limits of such a vehicular content downloading system by modeling the downloading process as an optimization problem, and maximizing the overall system throughput. The research work investigates the impact of different factors, such as the roadside infrastructure deployment, the vehicle-to-vehicle relaying, and the penetration rate of the communication technology, even in presence of large instances of the problem. Results highlight the existence of two operational regimes at different penetration rates and the importance of an efficient, yet 2-hop constrained, vehicle-to-vehicle relaying.
Key-Words / Index Term
Traffic Monitoring Control, Optimal Content Download, V-to-V Communication Model, Density Base Communication Model, Dynamic Network Monitoring system
References
[1]. J. P. Collomosse, G. McNeill, and Y. Qian, “Storyboard sketches for content based video retrieval,” in Proc. Int. Conf. Computer Vision (ICCV’09), 2009, pp. 245–252
[2]. R. D. Dony, J. W. Mateer, J. A. Robinson, and M. G. Day. Iconic versus naturalistic motion cues in automated reverse storyboarding. In Proc. CVMP, pp. 17–25, 2005
[3]. D. Goldman, B. Curless, D. Salesin, and S. Seitz. Schematic storyboards for video editing and visualization. In Proc. ACM SIGGRAPH, volume 25, pp. 862–871, 2006.
[4]. J. Collomosse, G. McNeill, and L. Watts. Free-hand sketch grouping for video retrieval. In Proc ICPR, 2008.
[5]. E. Tulving. Elements of episodic memory. Oxford Claren-don, 1983. ISBN: 0-198-521251.
[6]. D. B. Goldman, C. Gonterman, B. Curless, D. Salesin, and S. M. Seitz, “Video object annotation, navigation, and composition,” in Proc. 21st Annu. ACM Symp. User Interface Software and Technology, 2008, pp. 3–12.
[7]. P. Dragicevic, G. Ramos, J. Bibliowicz, D. Nowrouzezahrai, R. Balakrishnan, and K. Singh. Video browsing by direct ma-nipulation. In CHI, pages 237–246, 2008.
[8]. T. Karrer, M. Weiss, E. Lee, and J. Borchers. DRAGON: A direct manipulation interface for frame-accurate in-scene video navigation. In CHI , pages 247–250, 2008
[9]. A. Agarwala, M. Dontcheva , M . Agrawala, S. Drucker, A . Col-burn, B. Curless, D. Salesin, and M. Cohen. Interactive dig-ital photomontage. ACM Trans. Graph. (Proc. SIGGRAPH),23(4):294–301, 2004.
[10]. A. Rav-Acha, Y. Pritch, D. Lischinski, and S. Peleg. Dynamo-saicing: Video mosaics with non-chronological time. In Proc. CVPR , pages 58–65, 2005.
[11]. R. L. Guimaraes, P. Cesar, and D. Bulterman, “Creating and sharing personalized time-based annotations of videos on the web,” in Proc. DocEng’10, 2010, pp. 27–36
[12]. Benevenuto, F., Rodrigues, T., Almeida, V., Almeida, J. and Ross, K. 2009. Video interactions in online video social networks. In ACM TOMCCAP, 5(4): n. 30, 2009. DOI= http://doi.acm.org/10.1145/1596990.1596994.
[13]. Choudhury, M. D., Sundaram, H., John, A. and Seligmann, D. D. 2009. What makes conversations interesting? Themes, Participants and Consequences of Conversations in Online Social Media. In Proceedings of the International WWW Conference, pp. 331-340. DOI= http://doi.acm.org/10.1145/1526709.1526754
[14]. E. Moxley, T. Mei, and B. S. Manjunath, “Video annotation through search and graph reinforcement mining,” IEEE Trans. Multimedia, vol. 12, no. 3, pp. 184–193, 2010.
[15]. Flickr . [Online]. Available: http://www.flickr.com/
[16]. YouTube . [Online]. Available: http://www.youtube.com/.
[17]. M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube, you tube, everybody tubes: Analyzing the world`s largest user generated content video system,” in Proc. ACM SIGCOMM Conf. Internet Measurement , New York, 2007, pp. 1–14.