Open Access   Article Go Back

Distributed Bid Construction Algorithm for Resource Allocation in Ad-Hoc Networks

V. Mahesh1

Section:Research Paper, Product Type: Journal Paper
Volume-07 , Issue-04 , Page no. 193-197, Feb-2019

Online published on Feb 28, 2019

Copyright © V. Mahesh . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: V. Mahesh , “Distributed Bid Construction Algorithm for Resource Allocation in Ad-Hoc Networks,” International Journal of Computer Sciences and Engineering, Vol.07, Issue.04, pp.193-197, 2019.

MLA Style Citation: V. Mahesh "Distributed Bid Construction Algorithm for Resource Allocation in Ad-Hoc Networks." International Journal of Computer Sciences and Engineering 07.04 (2019): 193-197.

APA Style Citation: V. Mahesh , (2019). Distributed Bid Construction Algorithm for Resource Allocation in Ad-Hoc Networks. International Journal of Computer Sciences and Engineering, 07(04), 193-197.

BibTex Style Citation:
@article{Mahesh_2019,
author = {V. Mahesh },
title = {Distributed Bid Construction Algorithm for Resource Allocation in Ad-Hoc Networks},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {2 2019},
volume = {07},
Issue = {04},
month = {2},
year = {2019},
issn = {2347-2693},
pages = {193-197},
url = {https://www.ijcseonline.org/full_spl_paper_view.php?paper_id=751},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.ijcseonline.org/full_spl_paper_view.php?paper_id=751
TI - Distributed Bid Construction Algorithm for Resource Allocation in Ad-Hoc Networks
T2 - International Journal of Computer Sciences and Engineering
AU - V. Mahesh
PY - 2019
DA - 2019/02/28
PB - IJCSE, Indore, INDIA
SP - 193-197
IS - 04
VL - 07
SN - 2347-2693
ER -

           

Abstract

This Project work would primarily think about the Mobile unplanned networks area unit shaped by wireless nodes that move freely and haven`t any mounted infrastructure. The shared channel is sculptured as a information measure resource outlined by top cliques of mutual meddling links. We have a tendency to propose a unique resource allocation algorithmic rule that employs associate degree auction mechanism within which flows are bidding for resources. The bids rely each on the flow’s utility operate and therefore the as such derived shadow costs. I then mix the admission management theme with a utility aware on-demand shortest path routing algorithmic rule wherever shadow costs are used as a natural distance metric. As a baseline for analysis, I show that downside the matter is developed as a applied mathematics (LP) problem. Thus, we are able to compare the performance of our distributed theme to the centralized phonograph recording resolution, registering results terribly near the optimum. Next, I isolate the performance of price-based routing and show its blessings in hotspot situations, associate degreed conjointly propose an asynchronous version that`s additional possible for impromptu environments. Additional experimental analysis compares our theme with the state of the art derived from Kelly’s utility maximization framework and shows that our approach exhibits superior performance for networks with magnified quality or less frequent allocations. The contributions of this project are as follows: we have a tendency to propose and judge a combined routing, admission management, and resource allocation theme that aims to maximise the aggregate utility of the system. As a part of this theme, 2 novel utility-based algorithms are bestowed. The core of the theme may be a distributed, QoS-aware, price- based allocation algorithmic rule that allocates information measure to flows mistreatment solely regionally offered data. A complementary price-based routing algorithmic rule for selecting the foremost advantageous path for the flows is additionally projected.

Key-Words / Index Term

QOS, Computing, resource allocation

References

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor Networks: A Survey,” Computer Networks, vol. 38, no. 4, pp. 393-422, 2002.
[2] B. Bamba, L. Liu, P. Pesti, and T. Wang, “Supporting Anonymous Location Queries in Mobile Environments with Privacygrid,” Proc. Int’l Conf. World Wide Web (WWW ’08), 2008.
[3] BlueRadios Inc., “Order and Price Info,” http://www.blueradios. com/orderinfo.htm, Feb. 2006.
[4] B. Bollobas, D. Gamarnik, O. Riordan, and B. Sudakov, “On the Value of a Random Minimum Weight Steiner Tree,” Combinatorica, vol. 24, no. 2, pp. 187-207, 2004.
[5] H. Chan, A. Perrig, and D. Song, “Random Key Predistribution Schemes for Sensor Networks,” Proc. IEEE Symp. Security and Privacy (S&P ’03), pp. 197-213, May 2003.
[6] J. Deng, R. Han, and S. Mishra, “Enhancing Base Station Security in Wireless Sensor Networks,” Technical Report CU-CS-951-03, Univ. of Colorado, Dept. of Computer Science, 2003.
[7] J. Deng, R. Han, and S. Mishra, “Intrusion Tolerance and Anti- Traffic Analysis Strategies for Wireless Sensor Networks,” Proc. Int’l Conf. Dependable Systems and Networks (DSN ’04), June 2004.
[8] J. Deng, R. Han, and S. Mishra, “Decorrelating Wireless Sensor Network Traffic to Inhibit Traffic Analysis Attacks,” Pervasive and Mobile Computing J., Special Issue on Security in Wireless Mobile Computing Systems, vol. 2, pp. 159-186, Apr. 2006.
[9] L. Eschenauer and V.D. Gligor, “A Key-Management Scheme for Distributed Sensor Networks,” Proc. ACM Conf. Computer and Comm. Security (CCS ’02), Nov. 2002.
[10] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.L. Tan, “Private Queries in Location Based Services: Anonymizers are not Necessary,” Proc. ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’08), 2008.
[11] H. Gupta, Z. Zhou, S. Das, and Q. Gu, “Connected Sensor Cover: Self-Organization of Sensor Networks for Efficient Query Execution,” IEEE/ACM Trans. Networking, vol. 14, no. 1, pp. 55- 67, Feb. 2006.
[12] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy, “The Platforms Enabling Wireless Sensor Networks,” Comm. ACM, vol. 47, no. 6, pp. 41-46, 2004.
[13] Y. Jian, S. Chen, Z. Zhang, and L. Zhang, “Protecting Receiver- Location Privacy in Wireless Sensor Networks,” Proc. IEEE INFOCOM, pp. 1955-1963, May 2007.
[14] D.B. Johnson, D.A. Maltz, Y. Hu, and J.G. Jetcheva, “The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks (DSR),” IETF Internet draft, Feb. 2002.
[15] P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk, “Enhancing Source-Location Privacy in Sensor Network Routing,” Proc. Int’l Conf. Distributed Computing Systems (ICDCS ’05), June 2005.
[16] D. Liu and P. Ning, “Establishing Pairwise Keys in Distributed Sensor Networks,” Proc. ACM Conf. Computer and Comm. Security (CCS ’03), Oct. 2003.
[17] K. Mehta, D. Liu, and M. Wright, “Location Privacy in Sensor Networks against a Global Eavesdropper,” Proc. IEEE Int’l Conf. Network Protocols (ICNP ’07), 2007.
[18] D. Niculescu and B. Nath, “Ad Hoc Positioning System (APS) Using AoA,” Proc. IEEE INFOCOM, pp. 1734-1743, Apr. 2003.
[19] Y. Ouyang, Z. Le, G. Chen, J. Ford, and F. Makedon, “Entrapping Adversaries for Source Protection in Sensor Networks,” Proc. Int’l Conf. World of Wireless, Mobile, and Multimedia Networking (WoWMoM ’06), June 2006.
[20] C. Ozturk, Y. Zhang, and W. Trappe, “Source-Location Privacy in Energy-Constrained Sensor Network Routing,” Proc. Workshop Security of Ad Hoc and Sensor Networks (SASN ’04), Oct. 2004.
[21] V. Paruchuri, A. Duressi, M. Duressi, and L. Barolli, “Routing through Backbone Structures in Sensor Networks,” Proc. 11th Int’l Conf. Parallel and Distributed Systems (ICPADS ’05), 2005.
[22] C.E. Perkins, E.M. Belding-Royer, and S.R. Das, “Ad Hoc On- Demand Distance Vector (AODV) Routing,” IETF Internet draft, Feb. 2003.
[23] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar, “SPINS: Security Protocols for Sensor Networks,” Proc. ACM MobiCom, July 2001.
[24] T.S. Saponas, J. Lester, C. Hartung, S. Agarwal, and T. Kohno, “Devices that Tell on You: Privacy Trends in Consumer Ubiquitous Computing,” Proc. USENIX Security Symp., 2007.
[25] A. Savvides, C. Han, and M. Srivastava, “Dynamic Fine-Grained Localization in Ad-Hoc Networks of Sensors,” Proc. ACM MobiCom, July 2001.
[26] M. Shao, Y. Yang, S. Zhu, and G. Cao, “Towards Statistically Strong Source Anonymity for Sensor Networks,” Proc. IEEE INFOCOM, 2008.
[27] V. Srinivasan, J. Stankovic, and K. Whitehouse, “Protecting Your Daily In-Home Activity Information from a Wireless Snooping Attack,” Proc. Int’l Conf. Ubiquitous Computing (UbiComp ’08), 2008.
[28] H. Takahashi and A. Matsuyama, “An Approximate Solution for the Steiner Problem in Graphs,” Math. Japonica, vol. 24, pp. 573- 577, 1980.
[29] Y. Yang, M. Shao, S. Zhu, B. Urgaonkar, and G. Cao, “Towards Event Source Unobservability with Minimum Network Traffic in Sensor Networks,” Proc. ACM Conf. Wireless Network Security (WiSec ’08), 2008.