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Abstract— The thermal effects of the suction velocity, in conjunction with other flow parameters, on an unsteady free 

convective viscous incompressible flow past an infinite vertical flat plate submersed in a saturated porous medium is 

investigated. The effect of various flow parameters like chemical reaction parameter Kr, Schimdt number Sc, radiation 

absorption coefficient Q1, heat absorption coefficient φ radiation parameter N, Magnetic parameter M, Permeability 

parameter K, and time t on the velocity, temperature and concentration as well as the skin friction, rates of heat and 

mass transfer are obtained numerically and discussed. The results obtained are presented with the help of graphs. 
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I. INTRODUCTION  

 Study of MHD flow with heat and mass transfer plays an 

important role in chemical, mechanical and biological 

Sciences. Some important applications are cooling of nuclear 

reactors, liquid metals fluid, power generation system and 

aerodynamics. In addition, flow through a porous medium 

have numerous engineering and geophysical applications, for 

example, in chemical engineering for filtration and 

purification process; in agriculture engineering to study the 

underground water resources; in petroleum technology to 

study the movement of natural gas, oil and water through the 

oil reservoirs. In view of these applications, many 

researchers have studied MHD free convective heat and mass 

transfer flow in a porous medium. Free convection effects on 

the oscillating flow past an infinite vertical porous plate with 

constant suction was studied by Soundalgekar [1]. 

A.V.Dubewar and V.M.Soundalgekar [2] obtain the exact 

solution of Mass transfer effects on transient flow past an 

infinite plate with periodic heat flux and extended their study 

to Mass transfer effects on free convection flow past an 

infinite vertical porous plate [3]. V.Ambethkar [4] obtained 

the numerical solutions of heat and mass transfer effects of 

an unsteady MHD free convective flow past an infinite 

vertical plate with constant suction. Unsteady oscillatory free 

convection flow plays an important role in chemical 

engineering, turbo machines, and aerospace technology. 

Such flows arise due to unusual motion of boundary or 

boundary temperature. Recently Singh et al. [5] have 

investigated the effect of oscillatory suction velocity on free 

convection and mass transfer flow of a viscous fluid past an 

infinite vertical porous plate. 

 

Sahoo et al. [6] have analysed MHD unsteady free 

convective flow past an infinite vertical plate with constant 

suction and heat sink.  Extension to this problem has been 

done by Muthucumaraswamy and Kumar [7]. Acharya et al. 

[8] have studied free convection and mass transfer flow 

through a porous medium bounded by vertical infinite 

surface with constant suction and heat flux. In this study, we 

have extended the flow problem for the case of radiative heat 

transfer in porous media but restricted to the case to semi-

infinite moving plate.  

II. MATHEMATICAL FORMULATION 
 

An unsteady laminar free MHD convective flow of a 

electrically conducting and radiating, viscous incompressible 

fluid past an infinite vertical porous flat plate in slip-flow 

regime, with periodic temperature and concentration when 

variable suction velocity distribution )1(
0

* t
eV


   is 

considered whereV0 is the mean suction velocity and ε is a 

small quantity less than unity. The negative sign indicates that 

the suction velocity is directed towards the plate. A co-

ordinate system is employed with wall lying vertically in x
*
y

*
 

-plane. The x
*
 - axis is taken in vertically upward direction 

along the vertical porous plate and y
*
 -axis is taken normal to 

the plate.  Since the plate is considered infinite in the x
*
 

direction, hence all physical quantities will be independent of 

x∗. Under this assumption, the physical variables are purely 
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the functions of y∗ and t∗ only.  In the fitness of the realistic 

situation by neglecting viscous dissipation and then assuming 

variation of density in the body force term under Boussinesq's 

approximation the flow is governed by the following set of 

equations: 
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            Where  ∗  ∗  ∗   
∗        

∗   
∗           

∗   , 

          , K
1
,D are dimensional temperature, dimensional 

concentration, permeability parameter, wall dimensional 
velocity, free stream temperature, free stream concentration, 
coefficient of concentration expansion, radiation absorption 
parameter, heat absorption coefficient, density of the fluid, 
electric conductivity of the fluid, the coefficient of thermal 
expansion, thermal conductivity, magnetic induction, the 
specific heat at constant pressure, the radiative heat flux, 
kinematic viscosity,  chemical reaction parameter, the mass 
diffusivity coefficient respectively. 

The Rosseland diffusion flux is used and defined 
following  
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where *
 is the Stephen Boltzmann constant and Ke is the 

mean absorption coefficient. It should be noted that by using 

the Rosseland approximation, the present analysis is limited 

to optically thick fluids. If the temperature differences within 

the flow are sufficiently small, then equation (4) can be 

linearized by expanding 4
T into the Taylor series about T∞, 

which after neglecting higher order terms takes the form  
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Using equation (5), the energy equation (2) becomes 

   
2

23*

*

1

0

2

2

0

16
***

*

*

*

*
)1(

*

*

y

T

KeC

T
CCQTT

C

Q

y

T

C

K

y

T
eV

t

T

pp

p

t



































                             (6) 

 

The corresponding initial and boundary conditions are 












CCTTtUuyfor

CCTTuuyfor
www

*,*,,)(*,*

*,*,*,0
**

          (7) 

In order to write the governing equations and the 

boundary conditions in dimensionless form, the following 

non-dimensional quantities are introduced 
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Using the above non-dimensional quantities the governing 

equations (1), (3) and (6) becomes 
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The corresponding initial and boundary conditions are 
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III.  SOLUTION OF THE PROBLEM       

In order to solve the dimensionless governing equations (9) 

to (11) subject to boundary conditions (12) we apply the 

regular perturbation method due to their non-linearity. 

However, the fact that perturbation parameter is small in 

most practical problems. This can be done by representing 

the velocity, temperature and concentration of the fluid in 

terms of perturbation parameter, with U (t) =1+ t
e


 , which 

is as follows:  

u (y, t) = u0(y)+ t
e


 u1(y), θ(y, t) = θ0(y) 

      + t
e


  θ1(y), C(y, t)= C(y)+ t
e


 C(y)             (13) 
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Solving (14) – (16) subject to (17) the solution of zero th 

order is obtained as 

u0(y) =1+B10
ym

e 1
+B9

ym
e 1

+B8
ym

e 3
+B11

ym
e 5

             (18)                                                  

θ0(y) =B2
ym

e 1
-B2 

ym
e 3

+ 
ym

e 3
                                      (19)                                                           

C0(y) = 
ym

e 1
                                                                     (20)                                                            

First order 

0
0014

1

2

1

2

 GcCGrua
dy

du

dy

ud
                            (21)                                                                                    

0
3

4
1

Pr

1

01004

0

2

0

2









 CQa

dy

d

dy

d

N



         (22)                                                                                   

0
1

0

0

2

0

2

 C
dy

dC

dy

Cd

Sc
                                               (23)                                                                                     

The boundary conditions are  
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Solving (21) – (23) subject to (24) the solution of first 

order is obtained as 
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Now it is important to calculate the physical quantities of 

primary interest, which are the skin friction, surface heat flux 

and Sherwood number. 

Dimensionless surface heat flux or Nusselt number is 

obtained as 
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Dimensionless local wall shear stress or skin-friction is 
obtained as, 
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Dimensionless mass transfer coefficient or the Sherwood 

number is obtained as, 
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IV.  RESULTS AND DISCUSSION 
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In order to illustrate the influence of various physical 

parameters viz., thermal radiation, magnetic parameter, 

chemical reaction parameter and permeability parameter on 

the velocity, temperature, concentration, skin-friction, 

Nusselt number and Sherwood number, the numerical 

calculations are carried out and results are presented 

graphically with figures. Throughout the calculations, the 

parametric values are taken as, Gr = 4, Gc = 2, Q1 = 2, K = 

2, M = 2, ε=0.2, ω=0.1 ut=0.5, Pr =0.71, t =1, ϕ = 2, γ = 0.2 

and Sc = 0.2 unless otherwise stated specifically. 

 

In Fig.1. it is seen that the temperature decreases as the 

radiation parameter N increases. This result qualitatively 

agrees with expectation since the effect of radiation is to 

decrease the rate of energy transport to the fluid, thereby 

decreasing the temperature of the fluid.  

In Fig.2.  It is observed that an increase in the radiation 

parameter leads to an increase in the temperature. 

In Fig.3. It is noticed that there is decrease of the boundary 

layer thickness due to the increasing value of Prandtl number 

Pr.  

In Fig.4. It is observed that rise in the heat absorption 

parameter leads to a decrease in the temperature. 

Fig.5. shows the effect of permeability parameter K on the 

velocity distribution. It is observed that the velocity rises due 

to rise in K this agrees with the fact that increase in K will 

decrease the resistance of the porous medium resulting in 

increase in velocity. 

Fig.6. shows the effect of magnetic parameter M on velocity 

it is seen that increase in the value of M results the decrease 

in velocity. It is true as magnetic force retards the flow 

velocity. 

Fig.7 and 8. shows the effect of velocity for different values 

of Gr, the thermal bouncy force and Gc, the species bouncy 

force from these it is noticed that velocity increases with the 

increase in values of Gm and Gc. 

The effects of Sc, the Schmidt number on velocity and 

concentration profile are plotted in Fig.9-10. respectively. It 

is found that an increase in Sc leads to a decrease in both the 

values of velocity and concentration. 

Fig.11. shows the effect of concentration on chemical 

reaction parameter γ.It is noticed that chemical reaction γ 

increases the concentration decreases. 

The effects of K, M, γ and Sc on Cf , the skin-friction 

coefficient are plotted in Fig.12-15. It is noticed that as K or 

γ or Sc increases the skin-friction coefficient increases 

whereas the skin-friction decreases as M increases.  

Fig.16 -19. depicts the effects of γ, Pr, ϕ, Q1 on the Nusselt 

number. It is observed that the Nusselt number increases as 

the radiation parameter or Prandtl number, Pr or heat 

absorption parameter, ϕ increases, whereas it decreases as the 

radiation absorption parameter, Q1 increases.  

Fig.20- 21. delineates the effects of chemical reaction 

parameter γ and Schmidt number Sc on the Sherwood 

number Sh. It is noticed that the Sherwood number increases 

as chemical reaction parameter or Schmidt number increases. 
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