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Abstract— Secure communication in Computer Network is very important which can be achieved by Transport Layer 

Security (TLS) protocol. Various libraries have been created for the implementation of TLS functions by the researchers, 

of which each has wide support of the encryption algorithms, key exchange mechanism from which one can implement 

TLS for secure communications. In this paper, to find the best suitable SSL/TLS library, relative analysis of the six widely 

used libraries has been done based on various affecting parameter such Languages, Cryptographic Token Interface - 

PKCS#11, Thread Safety, and CPU Assisted Cryptography with AES-NI. Any organization can use an effective and 

efficient library that will provide the appropriate security and fulfill the expectation of the application. 
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I.  INTRODUCTION  

 

Security in communication is essential to facilitate 

reliability, data integrity, and confidentiality, Transport 

Layer Security (TLS) can provide these aspects for secure 

connection over computer networks. It can be used in 

Email, VOIP (Voice over Internet Protocol), Web 

browsing, Bank transactions for the prevention of 

eavesdropping and tampering of data. Various versions of 

TLS have been developed as per requirement of secure 

communication such as SSL1.0, SSL2.0, SSL3.0, TLS1.0, 

TLS1.1, TLS1.2, TLS1.3. Each cipher suite contains 

authentication, message authentication code (MAC), key 

exchange, and encryption algorithms.  

 

As per the report of Internet Engineering Task Force 

(IETF) for secure communication use of cipher suite below 

TLS 1.0 are not useful, as those are less secure and most of 

the browsers provide warning if some site is having old 

version. In the case of connectionless application, 

Datagram Transport Layer Security (DTLS) is used and it 

is similar to TLS except that for DTLS, it has to solve 

problems of packet loss and reordering. Mainly DTLS 

allows three features as  

1) Packet Retransmission: Lost packets retransmission 

mechanism.  

2) Sequencing for Packets: Assign sequence number to 

datagram for reordering and packet loss.  

3) Replay detection: Used to avoid duplicate packets and 

discarding old received packets. 

 

In this paper, we have taken six libraries such as OpenSSL, 

GnuTLS, BoringSSL, AWS s2n TLS, NSS, Cryptlib for 

relative analysis purpose and to find the best suited 

libraries for secure communication. 

Organization of the paper is as follows- Section II provides 

chronicles of the related work of researchers, proposed 

methodology for relative analysis as per parameters has 

been given in Section III, Section IV provides the results 

and analysis as per parameters, and Section V presents the 

conclusion and future scope. 

 

II. RELATED WORK  

 

Various TLS libraries supported for connection oriented 

and connectionless application. To solve the issues of 

packet loss and reordering DTLS is used [1]. The Network 

Security Services (NSS) is an open-source TLS library 

designed to support cross-platform server-side and 

hardware smart cards on the client-side. NSS is developed 

by Netscape in 1997[2]. OpenSSL is an Open-Source TLS 

library used for secure communication over the computer 

network founded in Dec 1998 by Eric Andrew Young and 

Tim Hudson[3]. The Gnu TLS is a TLS library that allows 

client applications to start a secure session over the 

computer network using available protocols developed in 

March 2003 by Nikos Mavrogiannopoulos[4]. Whereas 

Cryptlib is an open-source security toolkit library that 

supports various cryptographic libraries to implement the 

secure sessions in SSL/TLS, developed by Peter Gutmann 

in Dec 2003[5]. 

 

 Boring SSL is designed and developed in June 2014 by 

Google to meet Google's needs and supports various cipher 

suite algorithms for secure communication[6]. AWS s2n 

(Signal 2 Noise) is also an open-source TLS library 

developed by Amazon Web Services (AWS) and supports 

various cryptographic algorithms to implement SSL/TLS 

[7].  
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EverCrypt is a C/x86 cryptography library developed by 

the Everest project [8-11]. Recent findings are outstanding, 

with performance similar to a well-optimized OpenSSL 

program. EverCrypt, on the other hand, follows a different 

concept, where the library and proof are co-designed, and 

in some situations, code is synthesized. AWS-LC, 

BoringSSL, and OpenSSL are examples of handwritten 

libraries that could be replaced by such libraries in the 

future, according to this approach. 

 

Researcher verifies SHA-256 in the CASM project. The 

CASM toolchain uses symbolic execution as well as SMT 

solvers. While SHA-256 as a whole can be analyzed, 

CASM only looks at functions over message blocks. Not 

even the most optimized variants of this algorithm are 

checked by CASM[12]. However, Fiat Crypto does not 

apply to the algorithms proven in this study [13]. A high-

level specification is used to build portable C field 

arithmetic implementations, which are then used to 

generate the implementations. Fiat Crypto's code has 

already been incorporated into OpenSSL[14]. Similarly, 

Jasmin is an important synthesis method vectorized in x86 

implementations with good performance are generated by 

it [15]. When compared to other hand-optimized 

implementations, the Jasmin implementation of 

ChaCha20-Poly1305 performs far better. SHA-256 and 

AES-GCM have not been implemented in Jasmin.  

 

Therefore, it is clear that various TLS Libraries are 

available to provide the secure communication. It 

motivates me to do the relative analysis of these TLS 

libraries based on supported parameters and find better one 

as per requirement.  
 

III. METHODOLOGY 
 

Various TLS libraries are exist but it is very challenging to 

choose one library out of them as per requirement. Because 

each libraries has their own advantage and disadvantages  

To find the suitable TLS libraries, comparisons of the six 

widely used libraries such as OpenSSL, GnuTLS, 

BoringSSL, AWS s2n TLS, NSS, Cryptlib has been taken 

based on various affecting parameter like supported 

Languages, Cryptographic Token Interface-PKCS#11, 

Thread Safety, CPU Assisted Cryptography with AES-NI 

have been shown in fig. 1. 

 
Figure 1. Proposed Methodology for relative analysis of different 

SSL/TLS libraries with parameters as supported Languages, 

Cryptographic Token Interface, Thread Safety, CPU Assisted 

Cryptography. 

IV. RESULTS AND ANALYSIS 

 

The comparison of six TLS libraries criteria includes, 

Languages, Cryptographic Token, Thread safety, and CPU 

assisted Cryptography. Each type libraries provides a 

unique specification for the libraries and selection criteria 

have been tabulated in Table 1.  

 

Based on Languages supported: These six libraries are 

written in C language, whereas NSS and Boring SSL 

having extra support for C++ language, that is tabulated in 

Table 1. It is clear that one of the unique parts of NSS is 

having cross-platform support. The same library has 

modules and functions that can be used directly with 

UNIX-based or Windows machines. As for others, some 

wrapper package of patches needs to be added.  

 
Table 1.  TLS libraries and Support/Languages 
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s 
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Based on Cryptographic Token Interface: It’s provides 

a programming interface to create and manipulate 

cryptographic tokens. It has a Platform-Independent 

Application Programming Interface (API) for Hardware 

Security Modules (HSM) and Smart Cards. This API has 

been included in Public Key Cryptographic Standard #11, 

commonly known as PKCS #11, "Cryptoki".  

 

From table 1 we can notice that GnuTLS and NSS have 

support for PKCS #11 natively, but it’s not the case with 

OpenSSL. To use the API in OpenSSL, the API engine 

needs to be added externally through a patch. Now 

selecting a correct engine as per the requirement will be 

essential for successful token implementations. So in this 

criterion, selecting native implementation of PKCS #11, 
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which is present in NSS or GnuTLS, will be 

uncomplicated and effortless. The library Boring SSL, 

AWS s2n, and Cryptlib does not support a cryptographic 

token interface. 

 

Based on Thread Safety: It’s ensures safe handling of 

shared data structures, by which all the threads behave 

correctly without violating their specification. From table 1 

it’s clear that, even if OpenSSL supports thread safety with 

POSIX or Windows Threads, earlier versions than 1.1.0, it 

can safely be used in multi-threaded applications provided 

that at least two callback functions are set, locking function 

and threaded function and for later versions, with some 

limitations. An SSL connection cannot be used 

concurrently by multiple threads. GnuTLS, Boring SSL, 

NSS, and Cryptlib also provide thread safety with the use 

of POSIX or windows thread. Whereas GnuTLS utilizes 

mutual exclusion locks for the data structure protection 

with Random number generator locks are set up by 

GnuTLS on library initialization, but AWS s2n does not 

have the thread safety support. 

 

Based on CPU Assisted Cryptography. This mechanism 

uses hardware acceleration for cryptographic functions 

with a supported instruction set. By using accelerators, 

intensive cryptographic operations can be run more 

efficiently than running on a general-purpose CPU. 

 

 Advanced Encryption Standard New Instructions (AES-

NI) is an extension for x86 instructions set architecture, 

used for Intel or AMD processor. It can be used to improve 

the speed of applications performing encryption and 

decryption using the Advanced Encryption Standard 

(AES). From table 1 it is clear that four libraries such as 

OpenSSL, BoringSSL, AWS s2n, and NSS can take 

advantage of this feature. But the GnuTLS and Cryptlib 

have additional support for VIA PadLock Security Engine 

in VIA x86 processors. It uses a different instruction set 

than AES-NI for AES acceleration. So GnuTLS can 

provide support for systems with VIA processors. 

 

V. CONCLUSION AND FUTURE SCOPE  

 

In this paper, comparative analysis of the six TLS libraries 

such as OpenSSL, GnuTLS, BoringSSL, AWS s2n TLS, 

NSS, Cryptlib has been done to find the best library for 

TLS based on various affecting parameter of libraries such 

Languages support, Cryptographic Token Interface-

PKCS#11, Thread Safety, and CPU Assisted Cryptography 

with AES-NI. After analysis it is found that GnuTLS, NSS 

are best libraries that support all affecting parameters, 

whereas CPU Assisted Cryptography with AES-NI support 

is found in all these six libraries. In future comparison of 

TLS libraries can done on the basis of execution time and 

CPU usage to find the best TLS library on different 

machine. 
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