

 © 2021, IJCSE All Rights Reserved 59

International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol. 9, Issue.9, September 2021 E-ISSN: 2347-2693

Analysis of Cryptographic Libraries(SSL/TLS)

Suresh Prasad Kannojia

1*
, Jitendra Kurmi

2

1,2

Department of Computer Science, University of Lucknow, Lucknow, India

*Corresponding Author: spkannojia@gmail.com, Mobile: +91-8840880224

DOI: https://doi.org/10.26438/ijcse/v9i9.5962 | Available online at: www.ijcseonline.org

Received: 30/Aug/2021, Accepted: 20/Sept/2021, Published: 30/Sept/2021

Abstract— Secure communication in Computer Network is very important which can be achieved by Transport Layer

Security (TLS) protocol. Various libraries have been created for the implementation of TLS functions by the researchers,

of which each has wide support of the encryption algorithms, key exchange mechanism from which one can implement

TLS for secure communications. In this paper, to find the best suitable SSL/TLS library, relative analysis of the six widely

used libraries has been done based on various affecting parameter such Languages, Cryptographic Token Interface -

PKCS#11, Thread Safety, and CPU Assisted Cryptography with AES-NI. Any organization can use an effective and

efficient library that will provide the appropriate security and fulfill the expectation of the application.

Keywords—Thread Safety, TLS, AES-NI

I. INTRODUCTION

Security in communication is essential to facilitate

reliability, data integrity, and confidentiality, Transport

Layer Security (TLS) can provide these aspects for secure

connection over computer networks. It can be used in

Email, VOIP (Voice over Internet Protocol), Web

browsing, Bank transactions for the prevention of

eavesdropping and tampering of data. Various versions of

TLS have been developed as per requirement of secure

communication such as SSL1.0, SSL2.0, SSL3.0, TLS1.0,

TLS1.1, TLS1.2, TLS1.3. Each cipher suite contains

authentication, message authentication code (MAC), key

exchange, and encryption algorithms.

As per the report of Internet Engineering Task Force

(IETF) for secure communication use of cipher suite below

TLS 1.0 are not useful, as those are less secure and most of

the browsers provide warning if some site is having old

version. In the case of connectionless application,

Datagram Transport Layer Security (DTLS) is used and it

is similar to TLS except that for DTLS, it has to solve

problems of packet loss and reordering. Mainly DTLS

allows three features as

1) Packet Retransmission: Lost packets retransmission

mechanism.

2) Sequencing for Packets: Assign sequence number to

datagram for reordering and packet loss.

3) Replay detection: Used to avoid duplicate packets and

discarding old received packets.

In this paper, we have taken six libraries such as OpenSSL,

GnuTLS, BoringSSL, AWS s2n TLS, NSS, Cryptlib for

relative analysis purpose and to find the best suited

libraries for secure communication.

Organization of the paper is as follows- Section II provides

chronicles of the related work of researchers, proposed

methodology for relative analysis as per parameters has

been given in Section III, Section IV provides the results

and analysis as per parameters, and Section V presents the

conclusion and future scope.

II. RELATED WORK

Various TLS libraries supported for connection oriented

and connectionless application. To solve the issues of

packet loss and reordering DTLS is used [1]. The Network

Security Services (NSS) is an open-source TLS library

designed to support cross-platform server-side and

hardware smart cards on the client-side. NSS is developed

by Netscape in 1997[2]. OpenSSL is an Open-Source TLS

library used for secure communication over the computer

network founded in Dec 1998 by Eric Andrew Young and

Tim Hudson[3]. The Gnu TLS is a TLS library that allows

client applications to start a secure session over the

computer network using available protocols developed in

March 2003 by Nikos Mavrogiannopoulos[4]. Whereas

Cryptlib is an open-source security toolkit library that

supports various cryptographic libraries to implement the

secure sessions in SSL/TLS, developed by Peter Gutmann

in Dec 2003[5].

 Boring SSL is designed and developed in June 2014 by

Google to meet Google's needs and supports various cipher

suite algorithms for secure communication[6]. AWS s2n

(Signal 2 Noise) is also an open-source TLS library

developed by Amazon Web Services (AWS) and supports

various cryptographic algorithms to implement SSL/TLS

[7].

 International Journal of Computer Sciences and Engineering Vol.9(9), Sept 2021, E-ISSN: 2347-2693

 © 2021, IJCSE All Rights Reserved 60

EverCrypt is a C/x86 cryptography library developed by

the Everest project [8-11]. Recent findings are outstanding,

with performance similar to a well-optimized OpenSSL

program. EverCrypt, on the other hand, follows a different

concept, where the library and proof are co-designed, and

in some situations, code is synthesized. AWS-LC,

BoringSSL, and OpenSSL are examples of handwritten

libraries that could be replaced by such libraries in the

future, according to this approach.

Researcher verifies SHA-256 in the CASM project. The

CASM toolchain uses symbolic execution as well as SMT

solvers. While SHA-256 as a whole can be analyzed,

CASM only looks at functions over message blocks. Not

even the most optimized variants of this algorithm are

checked by CASM[12]. However, Fiat Crypto does not

apply to the algorithms proven in this study [13]. A high-

level specification is used to build portable C field

arithmetic implementations, which are then used to

generate the implementations. Fiat Crypto's code has

already been incorporated into OpenSSL[14]. Similarly,

Jasmin is an important synthesis method vectorized in x86

implementations with good performance are generated by

it [15]. When compared to other hand-optimized

implementations, the Jasmin implementation of

ChaCha20-Poly1305 performs far better. SHA-256 and

AES-GCM have not been implemented in Jasmin.

Therefore, it is clear that various TLS Libraries are

available to provide the secure communication. It

motivates me to do the relative analysis of these TLS

libraries based on supported parameters and find better one

as per requirement.

III. METHODOLOGY

Various TLS libraries are exist but it is very challenging to

choose one library out of them as per requirement. Because

each libraries has their own advantage and disadvantages

To find the suitable TLS libraries, comparisons of the six

widely used libraries such as OpenSSL, GnuTLS,

BoringSSL, AWS s2n TLS, NSS, Cryptlib has been taken

based on various affecting parameter like supported

Languages, Cryptographic Token Interface-PKCS#11,

Thread Safety, CPU Assisted Cryptography with AES-NI

have been shown in fig. 1.

Figure 1. Proposed Methodology for relative analysis of different

SSL/TLS libraries with parameters as supported Languages,

Cryptographic Token Interface, Thread Safety, CPU Assisted

Cryptography.

IV. RESULTS AND ANALYSIS

The comparison of six TLS libraries criteria includes,

Languages, Cryptographic Token, Thread safety, and CPU

assisted Cryptography. Each type libraries provides a

unique specification for the libraries and selection criteria

have been tabulated in Table 1.

Based on Languages supported: These six libraries are

written in C language, whereas NSS and Boring SSL

having extra support for C++ language, that is tabulated in

Table 1. It is clear that one of the unique parts of NSS is

having cross-platform support. The same library has

modules and functions that can be used directly with

UNIX-based or Windows machines. As for others, some

wrapper package of patches needs to be added.

Table 1. TLS libraries and Support/Languages

Support/

Languag

e

OpenSS

L

Gnu

TLS

Boring

SSL

AW

S

s2n

NS

S

Cryptl

ib

Language

s
C C

C or

C++,

Go,

Assemb

ly

C

C

or

C+

+

C

Cryptogra

phic

Token

Interface-

PKCS#11

Not

Present

natively

Prese

nt

Not

Present

Not

Prese

nt

Pre

sen

t

Not

Presen

t

Thread

Safety

Two

callback

functions

with

POSIX or

win

Threads

Use

POSI

X or

Win

Threa

d

Yes No
Ye

s

Use

POSIX

send()

and

recv().

API to

supply

your

replace

ment.

CPU

Assisted

Cryptogra

phy with

AES-NI

Yes

Yes

(+VI

A

Padlo

cks)

Yes Yes
Ye

s

Yes

(+VIA

Padloc

ks)

Based on Cryptographic Token Interface: It’s provides

a programming interface to create and manipulate

cryptographic tokens. It has a Platform-Independent

Application Programming Interface (API) for Hardware

Security Modules (HSM) and Smart Cards. This API has

been included in Public Key Cryptographic Standard #11,

commonly known as PKCS #11, "Cryptoki".

From table 1 we can notice that GnuTLS and NSS have

support for PKCS #11 natively, but it’s not the case with

OpenSSL. To use the API in OpenSSL, the API engine

needs to be added externally through a patch. Now

selecting a correct engine as per the requirement will be

essential for successful token implementations. So in this

criterion, selecting native implementation of PKCS #11,

 International Journal of Computer Sciences and Engineering Vol.9(9), Sept 2021, E-ISSN: 2347-2693

 © 2021, IJCSE All Rights Reserved 61

which is present in NSS or GnuTLS, will be

uncomplicated and effortless. The library Boring SSL,

AWS s2n, and Cryptlib does not support a cryptographic

token interface.

Based on Thread Safety: It’s ensures safe handling of

shared data structures, by which all the threads behave

correctly without violating their specification. From table 1

it’s clear that, even if OpenSSL supports thread safety with

POSIX or Windows Threads, earlier versions than 1.1.0, it

can safely be used in multi-threaded applications provided

that at least two callback functions are set, locking function

and threaded function and for later versions, with some

limitations. An SSL connection cannot be used

concurrently by multiple threads. GnuTLS, Boring SSL,

NSS, and Cryptlib also provide thread safety with the use

of POSIX or windows thread. Whereas GnuTLS utilizes

mutual exclusion locks for the data structure protection

with Random number generator locks are set up by

GnuTLS on library initialization, but AWS s2n does not

have the thread safety support.

Based on CPU Assisted Cryptography. This mechanism

uses hardware acceleration for cryptographic functions

with a supported instruction set. By using accelerators,

intensive cryptographic operations can be run more

efficiently than running on a general-purpose CPU.

 Advanced Encryption Standard New Instructions (AES-

NI) is an extension for x86 instructions set architecture,

used for Intel or AMD processor. It can be used to improve

the speed of applications performing encryption and

decryption using the Advanced Encryption Standard

(AES). From table 1 it is clear that four libraries such as

OpenSSL, BoringSSL, AWS s2n, and NSS can take

advantage of this feature. But the GnuTLS and Cryptlib

have additional support for VIA PadLock Security Engine

in VIA x86 processors. It uses a different instruction set

than AES-NI for AES acceleration. So GnuTLS can

provide support for systems with VIA processors.

V. CONCLUSION AND FUTURE SCOPE

In this paper, comparative analysis of the six TLS libraries

such as OpenSSL, GnuTLS, BoringSSL, AWS s2n TLS,

NSS, Cryptlib has been done to find the best library for

TLS based on various affecting parameter of libraries such

Languages support, Cryptographic Token Interface-

PKCS#11, Thread Safety, and CPU Assisted Cryptography

with AES-NI. After analysis it is found that GnuTLS, NSS

are best libraries that support all affecting parameters,

whereas CPU Assisted Cryptography with AES-NI support

is found in all these six libraries. In future comparison of

TLS libraries can done on the basis of execution time and

CPU usage to find the best TLS library on different

machine.

REFERENCES

[1] E. Rescorla, and N. Modadugu. "Datagram transport layer

security version 1.2." 2012.

[2] Mozilla Developer Network, "Network Security Services", Aug

10,

2021.https://developer.mozilla.org/enUS/docs/Mozilla/Projects/N

SS#Documentation.

[3] OpenSSL, Cryptography and SSL/TLS Toolkit - Threads, 1.0.2

manpages, 10 August 2021

https://www.openssl.org/docs/man1.0.2/crypto/threads.html

[4] GnuTLS, Transport Layer Security Library for the GNU system,

for version 3.7.1, March 2021.

https://www.gnutls.org/manual/gnutls.html

[5] Gutmann, Peter, "Downloading", cryptlib, University of

Auckland School of Computer Science, 07 July 2021

[6] Google. "BoringSSL." Google, 29 July 2021.

https://boringssl.googlesource.com/boringssl/

[7] A. Chudnov, N. Collins, B. Cook, J. Dodds, B. Huffman, C.

MacCárthaigh, S. Magill, "Continuous formal verification of

Amazon s2n", In International Conference on Computer Aided

Verification, pp. 430-446, Oxford, UK, 2018.

[8] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R.

Lorch, B. Parno, A. Rane, S. Setty, and L. Thompson, "Vale:

Verifying high-performance cryptographic assembly code", In

26th {USENIX} Security Symposium ({USENIX} Security 17),

pp. 917-934, VANCOUVER, BC, CANADA 2017.

[9] Fromherz, Aymeric, N. Giannarakis, C. Hawblitzel, B. Parno, A.

Rastogi, and N. Swamy, "A verified, efficient embedding of a

verifiable assembly language", Proceedings of the ACM on

Programming Languages 3, pp. 1-30, New York, United States,

2019

[10] T. Bingmann, "Speedtest and comparsion of open-source

cryptography libraries and compiler flags", Timo Bingmann–

2008. https://panthema. net/2008/0714-cryptography-speedtest-

comparison (2008), 2018.

[11] J.K Zinzindohoué, K. Bhargavan, J. Protzenko, and B.

Beurdouche, "HACL*: A verified modern cryptographic library",

In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, pp. 1789-1806,New

York, United States 2017.

[12] J. P. Lim, and S. Nagarakatte, "Automatic equivalence checking

for assembly implementations of cryptography libraries", In 2019

IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), pp. 37-49, Washington, DC, USA, 2019.

[13] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala,

"Simple high-level code for cryptographic arithmetic-with proofs,

without compromises", In 2019 IEEE Symposium on Security

and Privacy (SP), pp. 1202-1219, San Francisco, CA, USA ,

2019.
[14] V. Gopal, J. Guilford, E. Ozturk, S. Gulley, W. Feghali,

“Improving OpenSSL* Performance”, in IA Architects Intel

Corporation, October 2011,

https://software.intel.com/sites/default/files/open-sslperformance-

paper.pdf

[15] B. Boston, S. Breese, J. Dodds, M. Dodds, B. Huffman, A.

Petcher, and A. Stefanescu, "Verified Cryptographic Code for

Everybody", In International Conference on Computer Aided

Verification, pp. 645-668, Springer, Cham, 2021.

 International Journal of Computer Sciences and Engineering Vol.9(9), Sept 2021, E-ISSN: 2347-2693

 © 2021, IJCSE All Rights Reserved 62

AUTHORS PROFILE

Suresh Prasad Kannojia is working as

an Assistant Professor in the

Department of Computer Science,

University of Lucknow, Lucknow,

since 2005. He has completed his Ph.D

in 2013 from the University of

Lucknow, Lucknow. His current area

of research interest includes pattern

recognition, image security, software quality, system

security, data warehousing and data mining, Soft

computing. He has also organized three national

conferences and one national research scholars meet. He is

the author of three books (two National and one

International publisher). He has published 20 research

papers in national and international journal/conferences.

Jitendra Kurmi is a Research Scholar

in the Department of Computer

Science, University of Lucknow,

Lucknow, India. He received his

Master of Technology degree in

Computer Science and Engineering

from Lovely Professional University,

Jalandhar, Punjab, India, and Bachelor

of Technology degree in Computer Science and

Engineering from Integral University, Lucknow, India. His

main research interest focuses on Cryptography

Algorithms, Network Security, Transport Layer Security,

Soft Computing, and Image Processing.

