

 © 2019, IJCSE All Rights Reserved 601

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-7, Issue-2, Feb 2019 E-ISSN: 2347-2693

Boundary Analysis for Equivalent Class Partitioning by using Binary

Search

Sandeep Chopra
1*

, Lata Nautiyal
 2

, M.K. Sharma
3

1
MCA, Uttrakhand Technical University, Dehradun, India, 248001

2
MCA , Graphic Era University, Dehradun, India, 248002

3
MCA , Amarapali Institute, Haldwani, India, 263139

*Corresponding Author: tosandeepchopra2016@gmail.com, 9897884345

DOI: https://doi.org/10.26438/ijcse/v7i2.601605 | Available online at: www.ijcseonline.org

Accepted: 13/Feb/2018, Published: 28/Feb/2019

Abstract—Testing of Software is an indispensible phase of software development. It helps us to improve functional and non-

functional characteristics. To implement functional test scenario black box testing process is used, and the test bases are the

functional requirement. Nonfunctional requirement does not describe the function, but the attribute of the function i.e function

quality, usability, efficiency and reliability. To implement testing, the most difficult part is to design test cases. There are

numerous processes available which can help us to design test cases. This paper will present the novel algorithm of

Equivalence class partitioning. Here the input is partitioned by using a strategy that is inspired by binary search. Based on the

input data, the complete range is divided into two sub ranges, and this partition continues until a threshold is reached. The

proposed novel algorithm of testing will increase the reliability of the software product.

Keywords: Software testing, functional testing, black box testing, binary search, class partitioning.

I. INTRODUCTION

Software testing is a process of ensuring acceptable degree

of quality attributes of software. The main objective is to

achieve correctness, robustness , reliability etc. Testing is

the process of finding errors at any level or stage of

development that modifies non functional attributes like

reliability andquality of a software product[1,2].

One can know about the functional testing by verifying all

the functionality present in the software.

Fig1: Black box testing

The testing process includes two types of inputs - (i)

software configuration (ii) test configuration.

Test are performed with the test configuration on the

software configuration and all possible outcomes are stored.

These stored results are compared with expected results

.When the outcome result is not matched with the expected

result it means there is an error in the software, then this

error is reported for debugging[3,4,5]. The main objective of

this paper is to design a new algorithm for the tester, so that

one can divide input cases according to one’s requirement.

Boundary value analysis tests values only at the boundary,

but for the larger value only test at boundary level is not

sufficient.

II. TESTING OF DIFFERENT SOFTWARE

COMPONENTS

There is another aspect of testing i.e component based

testing[6]. This is typical because the tester has to integrate

two or more than two component before the testing can be

performed. This involves coupling i.e(joining more than

two module) and the good softwareshould possess

maximum cohesion and minimum coupling. This process

increase the reliability of a software[7].

Some popular definations of componenet testing are.

 TheIEEE defines software testing as “ the process of

analyzing a software item to detect differences between

existing and required condition and to evaluate the feature

s of the software item”.[8]

 Component testing is the activity in which individual

components are tested to ensure that they operate

correctly. Each component is tested independently and

correctly, without other system components gap and

errors.” Sommerville[9]

Broadly testing is divided into three category.

 Equivalence class partitioning testing

Testing i/p data Testing o/p data

 Testing the

system

mailto:tosandeepchopra2016@gmail.com

 International Journal of Computer Sciences and Engineering Vol. 7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 602

 Boundary Value testing (BVA)

 Decision table based testing

2.1 Equivalence class partitioning testing:

Equivalence class analysis is black box software testing

technique that minimizes the number of test cases to a

necessary minimum and selects a right test case that could

be represented to cover the possible similar scenario[10,11].

 Fig 2. Equivalence class testing

The following major steps are involved in equivalence class

analysis are

 Find and list all the input variables

 Find the equivalence classes for each variable and

its boundaries

 Write test cases for these classes

2.2 Boundary Value Analysis:

Boundary Value analysis concentrates on the behavior of

the system on its boundary condition or the boundary of its

input variables because system changes its nature very

frequently at the boundary[12].It means it is not stable at

the boundary. The boundary of a variable includes the

maximum and the minimum valid value allowed to attain

the system . It pin points on the data at the “edges” of an

equivalence class [13,14].

2.3 Decision Table based Testing

 A decision table is a compact way to model system

behavior for different input conditions and integrates the

functionality of the system with input predicates (if – else,

switch case). It tells the actions to be implemented for a

given closure of the system input. The decision table

consists four quadrants[15,16]

i. Condition stub: filled with all possible condition

ii. Condition entry stub: filled with all unique

combination of existence of the input condition

iii. Action stub: filled with all functionalities the system

is expected to perform during its execution.

iv. Action entry stub: a cross is marked in front of the

action to be taken in a particular combination of the

input condition.

III. DIFFERENT CHALLENGES IN SOFTWARE

TESTING

After going through all the criteria of software testing , one

identifies the problems and challenges while implementing

the testing. Some of them are given below

 The method of verification and validation are different in

conventional approach and component approach.[17]

 By adopting CBSE approach one can higher quality

product by reducing development cost and time . There

is some problem when we integrate diffrenr component

and composition of third party.[18,19]

 In Component based development , component vendor

implements testing criteria during early phases of

component development on the other hand user

performs testing activities during application

engineering.[20,21]

 Fig 3. Testing types at a glance

IV. ANALYSIS OF THE RELATED WORK DONE

This section highlights the previous work done in the field

of software testing. In [24] researcher focuses on sequence

 SYSTEM

OUTPUT

x1 x2 y1 y2 y3 z1 z2

Select the

test case

to include

every

element of

[X U Y U

Z]

Code walk through

complexity analysis test

coverage analysis

White box testing

Component systems

Black box testing
System Testing

Functionality

Usability
Performance

Stability

Volume data
Installation

Interrupt

Parallel
Processing

Cross Platform

 International Journal of Computer Sciences and Engineering Vol. 7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 603

and state diagram, thereby new test cases will be generated

automatically. In [25] researcher tried to identified the

problem arises when one of the component has changed or

modified. In [26] researcher proposed a state machine based

method to detect robustness problem and test the invalid

inputs. In [27] researcher proposed path-oriented random

testing, which minimize or rejects the number of inputs. In

[28] researcher partitioned the input in two classes i.e even

and odd and worked for integer inputs only. In [29]

researcher proposed the test cases of a boundary value

analysis based on strings ,which is a non-numeric variable.

V. TEST CASES FOR THE PROPOSED WORK

The most important thing while testing a software is to

design a test cases.

The main disadvantage of equivalence class partitioning is

that it gives values at the boundary .for example suppose we

have an element from [1 to 100].

so our test cases will be

Test Case 1:

a) i. x<1 ii. x=1 iii. x>1

b) i. x<100 ii. x=100 iii. x>100

 1 100

The equivalence class gives only few values but if the

database is very large and if we test only at the boundaries ,

the reliability of the software will be very low. So this paper

proposes a new algorithm where the tester is free to create

more boundary in between the equivalent class which helps

him to test as many caseshe want which will increase the

reliability . Suppose in the above example if the tester wants

to create two more points then the number of partitions will

be two and the position of partitioning will be entered by

the tester .For example position in the first case is 50, so in

the above array the partition will be [1 to 50] and [51 to

100].

so our test cases will be

Test Case 2:

a) i. x<1 ii. x=1 iii. x>1

b) i. x<50 ii. x=50 iii. x>50

c) i. x<51 ii. x=51 iii. x>51

d) i. x<100 ii. x=100 iii. x>100

 1 50 100

For example position in the second case is 25, so in the

above array the partition will be [1 to 25] , [26 to 50]

and [51 to 100].

so our test cases will be

Test Case 3:

a) i. x<1 ii. x=1 iii. x>1

b) i. x<25 ii. x=25 iii. x>25

c) i. x<26 ii. x=26 iii. x>26

d) i. x<50 ii. x=50 iii. x>50

e) i. x<51 ii. x=51 iii. x>51

f) i. x<100 ii. x=100 iii. x>100

 1 25 50 100

VI. PROPOSED ALGORITHM

I. Begin

II. Intialize variables

int *boundary,n // used for dynamic array and n is the sizre

of array

int i ,outerloop, innerloop , pos , found // global variables

int split_pos[25]; // it store all indexes from where array

splits,

III. Enter the size of an array from the tester and input

values dynamically.

 IV.Enter the position (pos) where user wants to split the

boundary into two parts

 i Check (pos> n-1 OR || pos<=0) then print

Invalid position

 ii Check or the duplicacy position whether boundary

is already splitted at this position.

 V. Assign the position of splitting in array split_pos and

increment the index

 VI. Now Call the sort function and pass the address

split_pos ,indexposition

 VII.Now create boundary & insert symbol “[“ at starting

and insert symbol “]” at the end

 for (outerloop=0 to outerloop<split_pos_max_index)

 end_pos = split_pos[outerloop];

 print “ [" // at the starting boundary

 for (innerloop=start_pos to innerloop<=end_pos) then

// initially start_pos =0 print the boundary elements of an

array

print "] " // at the end of the boundary

 // for the remaining array

print "\n ["; // at the starting of the next boundary

for innerloop=start_pos to innerloop<n) // n is the

number of elements in an arry

print the boundary elements of an array;

print "] " // at the end of the boundary

 VIII. This process continues for the remaining array.

 IX. End

 void sort(int *split_pos,intsplit_pos_max_index) //

definition of sort function

 Begin

 International Journal of Computer Sciences and Engineering Vol. 7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 604

 i. for i=0 to split_pos_max_index

 ii. for j=i+1 to split_pos_max_index

 iii. if split_pos[i] >split_pos[j] then

swap (split_pos[i] and split_pos[j])

 iv. End of step ii //End for loop ii.

 v . End of step i //End for loop i.

 End

Out put: For simplicity , the size of an array is in

between [0 – 9]. The code is written in C language.

 Figure 3

VII. COMPLEXITY OF THE ABOVE ALGORITHM

Suppose we have n elements in an array taking n=10 and the

element of an array is {0,1, 2, 3, 4, 5, 6, 7, 8, 9} . Now

suppose the tester wants to split at position 4.

Now the result of splitted array will be [0, 1, 2, 3, 4]and, [

5,6,7,8,9].

Now suppose again the tester wants to split at position 2 .

Now the result of splitted array will be [0, 1, 2] [3, 4] and,

[5, 6,7,8,9].

This process continues until we split the last element. So the

process can define as

 Step1: n elements in search space

 Step 2: n/2 elements in search space

 Step 3: n/4 elements in search space

 Step 4: 1 element in search space.

 The problem is , how many times can we divide M by 2

until we have 1 i.e

the last splited location in an array, Mathematically it can

be expressed as

1 = M / 2
x

2
x
 = M

Taking log both side

log 2
x
 = log M

x log 2 = log M

x= log M / log 2

x = log2M-------------------------------------(1)

This means tester can divide log2M times until a threshold is

reached. But every time when we split the boundary , the

sort function is called. This sort function arrange the index

of split_pos []array. Now the complexity of sort function

 To sort the first location of spli_pos array compiler

will have to (m-1) times.

 To sort the second location of spli_pos array

compiler will have to (m-2) times.

 This process continues until a the last location i.e a

thresh hold is reached,

So this will make a series i.e (m-1) + (m-2) + (m-

3)+………….+ 3 + 2 + 1.

This is an Arithmetic progression and the sum of

arithmetic progression will be

S={ n / 2*(2*a + (n-1)*d)}

Where n is the total number of elements , a is the

first term and d is the common difference,

In the above series a = m-1 , d= -1, no. of

elements = m

S = m / 2*(2*(m-1) + (m-1)* -1)

 = m*(2m-2-m +1)/ 2

 = m*(m-1)/2

 = m
2
/2 - m / 2

S= O(m
2
) i.e higher order of m----------------(2)

Combining (1) and (2) we will get m
2
log2M. This is the

complexity of this algorithm.

VIII. CONCLUSION

In this paper author has proposed a novel approach of

equivalence class partioning. The proposed algorithm is

implemented in C language and the output of the same is

shown in the figure3. The complexity of the algorithm is

also calculated.

 This proposed algorithm has given a free hand to the tester

to do the partitions the number of times he wants and also

increases the number of inputs. As the number of inputs

have increased which increases the number of test cases and

there by increases the reliability of a software product.

REFERENCES

[1]. B. Meyer. “The grand challenge of trusted components,” In Proc.

ICSE

[2]. 2003, pages 660–667. IEEE Computer Society Press, 2003,

 International Journal of Computer Sciences and Engineering Vol. 7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 605

[3]. Bertrand Meyer et al. “Providing Trusted Component to the Industry

,”

[4]. vol 31,no 5,pp104-105. IEEE, May 1998
[5]. C. Szyperski, Component Oriented Programming: Beyond Object

[6]. Oriented. Reading, MA: Pearson Education, 1999.
[7]. G. J. Myers, The art of software testing, 2nd ed. United States: John

[8]. Wiley & Sons, 2004.

[9]. Sandeep Chopra, M.K.Sharma, LataNautiyali, “Analogous Study of
[10]. Component-Based Software Engineering Models”,IJARCSSE, Vol.7

[11]. ,Issue 6, pp. 597-603, 2017

[12]. M. Sitariman and B. Weide, „Component-based software using
[13]. RESOLVE‟, ACM SIGSOFT Software Engineering Notes, vol. 19,

no.

[14]. 4, pp. 21–22, Oct. 1994
[15]. Sandeep Chopra etal“Elena – A Novel Component Based Life Cycle

[16]. Model”, European Journal of Advances in Engineering and

[17]. Technology 2017, 4(12): 932-940
[18]. IEEE “Standard Glossary of Software Engineering Terminology‟,

IEEE

[19]. Standards Board, Sep. 1990.
[20]. IanSommerville . Software Engineering . 9thedition.Addison Wesley

[21]. March 2010

[22]. LataNautiyal,Preeti, “A Novel Approach of Equivalent Class
[23]. Partitioning for Numerical Input”,ACM SIGSOFT ,Vol41, Number 1,

[24]. Jan 2016

[25]. LataNautiyal,etal, “A Novel Approach to Component Based Software
[26]. Testing”,ACM SIGSOFT ,Vol 39, Number 6, Nov 2014

[27]. J.MVoas ,” A dynamic testing complexity metric” Software Quality

[28]. Journal, vol 1 issue 2, pp 101-114 , june 1992
[29]. C.Ramamoorthyetal,” On the automated generation of program test

[30]. data”, IEEE Transaction on Software Engineering ,2(4): 293-300,

april
[31]. 1976

[32]. J. Voas and J. Payne, „Dependability certification of software

[33]. components‟, Journal of Systems and Software, vol. 52, no. 2–3, pp.
[34]. 165–172, Jun. 2000.

[35]. J. Voas, J. Payne, R. Mills, and J. McManus, “Software testability‟,

[36]. Proceedings of the 1995 Symposium on Software reusability - SSR
’95,

[37]. April. 1995.

[38]. E.J. Weyukar. More experience with data flow testing ,IEEE
[39]. Transaction on Software Engineering ,19(9), : 912- 919 , 1993

[40]. Beatriz Pérez Lamancha, Pedro Reales Mateo, Ignacio Rodríguez de

[41]. Guzmán, Macario Polo Usaola, and Mario Piattini Velthius,
“Automated

[42]. model-based testing using the UML testing profile and QVT,”

[43]. Proceedings of the 6th International Workshop on Model-Driven
[44]. Engineering, Verification and Validation (MoDeVVa 2009),Denver,

[45]. Colorado, USA, 05 Oct 2009. ACM International Conference

[46]. Proceedings Series, vol. 413, ACM Press, 2009.
[47]. Brown, Alan W., Wallnau, Kurt C. (1998): The Current State of

CBSE.

[48]. IEEE Software Journal, September/October 1998, pp. 37-46.
[49]. Han, Jun (1998): Characterization of Components. In proceedings of

[50]. International Workshop on Component- Based Software Engineering,

[51]. 1998.
[52]. Hong Zhu, Patrick A. V. Hall and John H. R. May, “Software Unit

Test
[53]. Coverage and Adequacy,” ACM Computing Survey, vol. 29, no. 4,

pp.

[54]. 366–427, Dec 1997.
[55]. Paul Baker, Zhen Ru Dai, Jens Grabowski, Øystein Haugen, Ina

[56]. Schieferdecker, and Clay Williams, Model-Driven Testing Using the

[57]. UML Testing Profile. Springer, 08 Nov 2007.
[58]. 22 . A. Bertolino and E. Marchetti. 2005. Introducing a Reasonably

[59]. Complete and Coherent Approach for Model-based Testing.

Electronic
[60]. Notes in Theoretical Computer Science, Elsevier, 116, 85–97

[61]. Leonardo Mariani and Mauro Pezz`e. 2005. A Technique for

Verifying

[62]. Component-Based Software, Electronic Notes in Theoretical
Computer

[63]. Science, Elsevier, 116, 17–30.
[64]. Bin Lei, Zhiming Liu, Charles Morisset and Xuandong Li, 2010. State

[65]. Based Robustness Testing for Components. Electronic Notes in

[66]. Theoretical Computer Science, Elsevier. 260, 173– 188.
[67]. Arnaud Gotlieb and Matthieu Petit. 2006. Path Oriented random

testing.

[68]. Proceedings of the First International Workshop on Random Testing,
[69]. July 20, 2006, Portland, ME, USA Copyright ACM.

[70]. A. Jain, S. Sharma, S. Sharma and D. Juneja. 2010. Boundary value

[71]. analysis for non-numerical variables: Strings, Oriental Journal of
[72]. Computer Science & Technology, Vol. 3(2), 323-330.

Authors Profile

Mr. Sandeep Chopra pursed Master of Computer

Application(MCA) from G.B.Pant Engineering college

(Pauri)in 2004. He has also done two more Master courses

i.e MSc(Maths) and MTech(IT). He has cleared UGC-

NET(thrice), U-SET, GATE exam in the field of computer

science. He is currently pursuing Ph.D. from Uttrakahand

Technical University(Dehradun) and currently working as

Assistant Professor in Department of Computer and

Information and technology, University of SGRR since

2006. His main research work focuses on Component based

software engineering.He has published 6 papers in

international and 2 papers in national journals. He has 14

years of teaching experience and 2 years of research

experience.

Dr. Lata Nautiyal pursed Doctor of Philosophy PhD from

Gurukul Kangri University in 2016.. She has also done three

Master courses i.e MSc(CS),MCA and MTech(CS). She is

currently working as Associate Professor in Department of

Computer Application in Graphic Era University. Her main

research work focuses on Component based software

engineering.She has published 15 papers in international and

12 papers in national journals. She has 15 years of teaching

experience and 6 years of research experience.

Dr. M.K.Sharma pursed Doctor of Philosophy PhD. He is

currently Professor and Head inMCA Department of

Amrapali Institute of technology,Haldwani. He has

published more than 25 papers in national and international

journals. He has 18 years of teaching experience and 7

years of research experience.

