

 © 2019, IJCSE All Rights Reserved 627

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-7, Issue-1, Jan 2019 E-ISSN: 2347-2693

 Computing SUM and COUNT aggregate functions of Iceberg query

using LAM strategy

S.N. Zaware-Kale

Department of Computer Engineering, AISSMS IOIT, SPPU, Pune, India

Corresponding author: sarikazaware@gmail.com

Available online at: www.ijcseonline.org

Accepted: 13/Jan/2019, Published: 31/Jan/2019

Abstract— Aggregate function plays very important role in analyzing data of data warehouse. Analysis of such a huge data

requires execution of complex queries such as iceberg and OLAP queries which consist of aggregate function. Improving the

performance of such a complex query is the challenge in front of the researchers .Presently available iceberg query processing

techniques faces the problem of empty bitwise operations, futile queue pushing and require more table scans. The model

proposed in this research applies concept of look ahead matching on bitmap index of query attributes. Based on the threshold

value the analysis of logical operation is done in advance. If result satisfies threshold condition then only remaining part will be

evaluated otherwise it will be prune and declare as fruitless operation. In this way look ahead matching strategy overcome the

problem of previous research. This research proposes framework for SUM and COUNT aggregate function.

Keywords— Aggregate functions(MIN, MAX, SUM, COUNT); Bitwise operations (AND,OR,XOR); Data warehouse(DW);

Iceberg query (IBQ); Look Ahead Matching(LAM) strategy

I. INTRODUCTION

DW has emerged as a distinct discipline in the field of
information technology. It is used for online analytical
processing system(OLAP).DW is a subject oriented,
integrated, non-volatile and time variant collection of data
which support in management's decisions making
process[1]. In OLAP systems, analysis is done by executing
different type of queries which run on huge amount of data
present in DW [2].The nature of the query to be execute on
DW is aggregate function followed by HAVING and GROUP
BY clause. Such a type of queries are called as IBQ. IBQ
perform an aggregate function across attributes and then
eliminate aggregate values that are below some specified
threshold. Iceberg queries are so called because the number of
above threshold results are often very small that is the tip of
an iceberg relative to the large amount of input data .Iceberg
queries are also common in many other applications including
information retrieval, clustering, and copy detection[3] .

The main part of any IBQ is aggregate function like
MIN,MAX,SUM,AVG and COUNT . Hence, the
performance of query is depend upon the time required to
execute aggregate function. Building aggregates on huge data
set and executing IBQ efficiently is challenge in front of
current researchers. [4].

This proposed research concentrate on efficient execution
of aggregate function and IBQ using bitmap indexing
technique. Bitmap Index of required attributes for query
processing is in the form of 0’s and 1’s. Due to this we are
performing logical AND,OR and XOR operations as per

query requirement. These logical operations can be executed
quickly by hardware. The major cost in query processing is
the I/O cost as query is going to execute on large database.
Due to highly compressible nature, BI have a low I/O cost,
and more data can be stored in the main memory for faster
query processing.[5].The execution cost of logical
operations are cheap which directly help in our strategy to
improve the performance of IBQ.

The researchers [4,5,6,7,8]work on improving the
performance of IBQ. But they faces the problem of empty
bitwise AND operation, empty bitwise XOR operation and
futile queue pushing .Proposed research overcome the
problem faced by using LAMS during computation of
aggregate function and evaluating IBQ. LAM strategy keep
track on probability of pruning the vector from further
computation in advance. For this it check intermediate results
with threshold condition and take decision related to further
processing of query evaluation. This minimizes fruitless
bitwise AND,OR and XOR operation which reduces query
execution time. Experimental result shows the superiority of
IBQ evaluation strategy proposed by this research.

This paper is organized as follows. In section II we do a
review of aggregate functions and IBQ processing, where we
have introduced the concepts of aggregate functions and
iceberg queries. In Section III we introduced the concept of
LAMS for IBQ evaluation, its pseudo code and performance
analysis of LAMS with old method. Section IV is the
concluding section of this paper.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 628

II. REVIEW OF AGGREGATE FUNCTIONS AND IBQ

PROCESSING

Generally, analysts are interested in summarizing data to
determine trends related to their business. This summarized
information is useful for top level management of
organization for decision making process. For example, the
purchasing manager may not be interested in a listing of all
computer hardware sales, but may simply want to know the
number of laptop sold in a particular month. In such a
situations Aggregate functions can assist with the
summarization of large volumes of data. An aggregate
function F is distributive if there is a function G such that F
(T) = G ({F (Si)| i = 1 . . . n}). SUM, MIN, and MAX are
distributive with G = F. Count function is distributive with G
= SUM.

Efficient computation of all these aggregate functions are
required in most of the database applications. The efficient
processing of aggregate function on large database is very
important because the base for all OLAP operation is
aggregate function. If aggregate function is efficient then only
query to be execute on large database will perform efficiently.

Here we are considering large size database which is used
for analysis of business. Decision related to business can be
taken based on previous data of business. Such type of huge
and historical data set is known as DW.IBQ and OLAP
queries are generally executing on DW where aggregate
function computation is needed.

Iceberg queries refer to a class of queries which compute
aggregate functions across attributes to find aggregate values
above some specified threshold. Given a relation R with
attributes a1, a2… an, and m, an aggregate function AggF,
and a threshold T, an iceberg query has the form of follow:

SELECT R.att1, R.att2… R.att n, AggFun (F)

FROM relation R

GROUPBY R.att1, R.att2… R.att n

HAVING AggFun Condition (C) >= T

The number of tuples, that satisfy the threshold in the
having clause, is relatively small compared to the large
amount of input data. The output result can be seen as the tip
of iceberg, where the input data is the iceberg..This IBQ
processing is first described by Min Fang[3] in 1998.Before
this probabilistic techniques were used to process queries
with aggregate functions are discussed by K. Whang[10].In
[3]author proposed Hybrid and Multi bucket algorithm by
extending probabilistic technique used in [10].This research
combine sampling and multi hash function concept to
improve the performance of IBQ and memory requirement.
But these algorithms are not suitable for large size data sets.

To overcome above problem [3] suggest technique
which uses combination of sampling and bucket counting
mechanism. These methods reduces number of false positive

values but it takes more time to execute query as it require
multiple scan of relation.

IBQ processing is also proposed by [11][focus of this
study is to reduce number of table scans so that time required
to execute the query will get reduced. It introduces methods to
select candidate values using partitioning and Postpone
Partitioning algorithms. This overcome the problem of
multiple scan over relation occurs in sampling and bucket
counting mechanism [3].The result of this study shows that
performance of above algorithms are degrade due to data
order and memory size. If database is sorted then performance
is excellent without regards to memory size.

A comparison was presented for Collective Iceberg Query
Evaluation (CIQE) [12] using three standard methods like
Sort Merge Aggregate (SMA), Hybrid Hash Aggregate
(HHA) and ORACLE. Each of these algorithms are having
some advantages and disadvantage against each other but
common problem with all these algorithm is they come under
the group of tuple scan based approach. Execution of these
algorithm require one physical table scan to read data from
disk. All above algorithms only concentrate on how to reduce
the number of table scan none of them make use of properties
of IBQ to solve this problem.

To overcome above problem Bitmap index is usually a
better choice for querying the massive, high-dimensional
scientific datasets. It supports fastest data accesses and
reduced the query response time on both high-and low-
cardinality values with a number of techniques
[13].Generating the bit map index of attribute will not affect
on the performance of query because generated bitmap by
database system is in compressed mode[14].Therefore use of
bitmap index to execute iceberg query avoids the complete
table scan.

In [15] researchers tries to make use of IBQ property as
well as bitmap index but it suffers from empty bit wise AND
result problem. This problem is minimized by[4] using
dynamic pruning and vector alignment approaches .This work
leverages the antimonotone property of iceberg query and
develop dynamic pruning algorithm using bitmap indexing.
However they notice that there is problem of massively empty
bitwise AND results. To overcome this challenge they
develop vector alignment algorithm which uses priority queue
concept. The problem with this technique is that all vectors
may not have 1 bit at same position and if it is not at same
position then all the AND as well as XOR operations are
fruitless and time consuming. In this way both the above
approaches suffer from fruitless AND as well as XOR
operations.

Research [6] try to handle empty XOR operation problem
but did not able to solve fruitless bit wise AND operation
problem. Both the research [4] and [6] uses priority queue
concept for all vectors and faces the problem of futile queue
pushing.

In proposed research by making use of LAMS we are
trying to minimize the number of fruitless bitwise XOR &

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 629

AND operation .It will help to minimize futile queue pushing
problem and improve the performance of queries with
aggregate function.

All of these research [4],[6],[7],[8] and [9] work on
COUNT aggregate function only . In proposed research we
are developing framework for aggregate functions like SUM
and COUNT.

III. WORK FLOW OF LAMS FOR IBQ PROCESSING

A. Fundamental Strategy

Suppose, a purchase manager is given a sales transaction

dataset, he/she may want to know the total number of
products, which are above a certain threshold T, of every type
of product in each local store. To answer this question, we can
use the iceberg query below:

SELECT Product_Type, Location, Sum (Product)

FROM Relation Sales_report

GROUPBY Product_Type ,Location

HAVING Sum (Product) >= Threshold

 To implement iceberg query, a common strategy in
horizontal database is first to apply hashing or sorting to all
the data in the dataset, then to count all of the location &
Product Type pair groups, and finally to eliminate those
groups which do not pass the threshold T. But these
algorithms can generate significant I/O for intermediate
results and require large amounts of main memory. They
leave much room for improvement in efficiency. One method
is to prune groups using the Apriori-like[16] method. But the
Apriori-like method is not always simple to use for all the
aggregate functions. For instance, the Apriori-like method is
efficient only in case of SUM aggregate function[17]. In our
method, instead of counting the number of tuples in every
location & Product Type pair group at first step, we can do
the following: Generate Location-list: a list of local stores
which sell more than T number of products. For example,

SELECT Location, Sum (Product)

FROM Relation Sales_report

GROUP BY Location

HAVING Sum (Product) >= Threshold

Generate Product Type-list: a list of categories which sell
more than T number of products.

For example,

SELECT Product_Type, Sum (Product)

FROM Relation Sales

GROUPBY Product _Type

HAVING Sum (Product) >= Threshold

 From the knowledge we generated above, we can
eliminate many of the location & Product _Type pair groups.
It means that we only generate candidate location and Product
Type pairs for local store and Product type which are in
Location-list and Product Type-list. This approach improves
efficiency by pruning many groups beforehand. Figure 1
shows the step wise working model of LAM Strategy.

Select attribute from Database as per requirement of

IBQ

Create and store BITMAP vector

Divide BITMAP

into

subsections

As per priority

select

subsections

Perform AND

operation

Perform XOR

operation

Validate RESULT

If NOT SATISFY Threshold

Condition Discard vector

Final IBQ RESULT

Look Ahead Matching Strategy(LAMS)

IBQ Input Database

Figure 1: Working model of LAMS

LAM strategy is used during bitwise AND operation. The
work flow of this strategy is based on dividing the Input
vectors into subparts. Perform the operation on subpart and go
on adding the results of other parts. The advantage of this
strategy is that in between if we notice that our result cross the
Threshold value then there is no need to perform remaining
bit wise operation. In this way in advance we are analyzing
results and avoid unnecessary operations. In this way this
strategy helps to improve query performance by reducing
number of I/O access and processing time.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 630

B. Pseduo Code of look ahead matching strategy

Input to algorithm is (Iceberg Query, Input Database),
Iceberg Query parameters are (attribute Location , attribute
Product, threshold T) and output contain combination which
satisfy IBQ threshold condition(T).

Algorithm:

 PriorityQueueA. clear, PriorityQueueB.clear for
Location and Product bitmap vector

 Divide the input vector into subparts.P=(L/T) where
L=length of vector, T=Threshold value .P=Number of
subparts={P1,P2,...,Pn}.

 Start with subpart P1 of each attribute vector Location
and Product do

 Perform Bitwise AND operation

 If Bitwise_AND_Result>T

 Then Skip Bitwise AND operation of remaining
subpart and send the current combination for XOR
operation

 Else store Bitwise_AND_Result and Perform
operation on next subpart. After every operation go on
checking Result with Threshold.

 If all subparts are finished and Bitwise_AND_Result
is not > T then simply discard the combination from
the list.In this way pruning the vector which does not
satisfy the Threshold condition will done.

 Forward the result for further XOR Operation

 If Bitwise_XOR_Result>T then put the combination
in final ICEBERG RESULT List. Also generate new
vector.

 Else discard the combination from the list.

 Repeat this operation till List will empty.

Same logic is applicable whenever new vector is generated
after XOR operation. In this way to implement all type of
aggregate operations like COUNT,SUM,MIN and MAX we
have used above logic only as per aggregate functions the
sequence of the operation to be change .

C. Performance Evaluation

The objective of this research is to improve the efficiency of
IBQ using LAMS. This algorithm is work on the BI created
on the attributes of the query. In this experiment first up all
we are generating BI and then applying LAMS.The efficiency
of this algorithm is measured in terms of number of iterations
and time required to execute the query. We have conducted
the experiment on different size databases and checked the
performance of SUM and COUNT aggregate function. We
have compare the results with previous techniques such as

bitmap indexing strategy(BIS) and Dynamic pruning strategy
(DPS). We found significant improvement in case of LAM
Strategy.

 Performance of all above strategies is measured in
terms of time. The dataset from IBM Watson community
group is used. We apply the algorithm on different tuple size
dataset. Similarly we have written different Iceberg queries
and performance is measured.

Query 1:

Select Month, Category, Count(*) from Monthly_Exp_25

group by Month, Category having Count(*)>=4;

Query 2:

Select Month, Category, SUM(Amount) from

Monthly_Exp_25 group by Month, Category having

SUM(Amount)>1000;

 We noticed significant improvement in performance
as we go on increasing the size of database as well as
threshold value(T).Following Figure 2,Figure 3,Figure
4,Figure 5 shows the comparison of look ahead
matching(LAM) strategy with vector alignment (VA) and
Dynamic Pruning(DP) for IBQ evaluation. In Figure.3 and
Figure 4 we noticed that even we increase database size as
well as threshold then also number of iterations to execute
query get reduced and remain constant for increase T. In this
way we have perform the experiment on different Data sets,
different aggregate functions and different threshold values.

Figure 2: COUNT Function on 1000 Tuple Dataset

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 631

Figure 3: COUNT Function on 5000 Tuple Dataset

Figure 4: SUM Function on 1000 Tuple Dataset

Figure 5: SUM Function on 5000 Tuple Dataset

Figure 6: Analysis of query1

Figure 7: Analysis of query2

Iteration analysis is represented in Figure 6 and Figure

7.Here we observed that as per the requirement of aggregate

function the number of iterations get varied from function to

function. The performance of LAM strategy in terms of

iteration, AND and XOR operation required is improved. As

the iterations required get reduced it directly improves the

performance in terms of time.We have also tested query 1

and query 2 on different size of data set.In that case also we

found the performance of LAM strategy superior to all

traditional algorithms.

IV. CONCLUSION

To execute complex OLAP queries on DW require much

processing cost. Normally, intention of DW query is
analyzing some parameters against another parameters from
same database. Almost for all analysis task aggregation is the
main function. Processing and executing queries which
contain aggregate function in traditional way is time
consuming process which require more I/O access . In this

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 632

paper we have proposed LAMS which help to execute such a
complex queries efficiently. Our experimental results help us
to prove the superiority of our research. The result of this
research will help to execute quires with aggregate function as
well as IBQ which improve the performance of OLAP queries
on DW.This research concentrate only on COUNT and SUM
aggregate function.In future by extending this concept we will
develop framework for other aggregate functions such as
MIN,MAX and AVERAGE.The focus of this research is only
structured database but in future we can apply the same logic
for query processing on unstructured data.

REFERENCES

[1] Inmon, William H. Building the data warehouse. Wiley. com,2005.

[2] Kazi, Z., B. Radulovic, D. Radovanovic, and Lj Kazi. "MOLAP data
warehouse of a software products servicing Call center." In MIPRO.
2010 Proceedings of the 33rd Inter national Convention, pp. 1283-
1287. IEEE, 2010

[3] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D.
Ullman,” Computing iceberg queries efficiently” VLDB Conf., pages
299-310, 1998.

[4] Bin He, Hui-I Hsiao, Ziyang Liu, Yu Huang and Yi Chen, “Efficient
Iceberg Query Evaluation Using Compressed Bitmap Index”, IEEE
Transactions On Knowledge and Data Engineering, vol 24, issue 9,
sept 2011, pp.1570-1589

[5] Parth Nagarkar,”Compressed Hierarchical Bitmaps for Efficiently
Processing Different Query Workloads”,IEEE International conference
on Cloud Engineering ,DOI 10.1109/IC2E.2015.99

[6] C.V.Guru Rao, V. Shankar,”Efficient Iceberg Query Evaluation Using
Compressed Bitmap Index by Deferring Bitwise- XOR Operations
“978-1-4673-4529-3/12/$31.00c 2012 IEEE

[7] C.V.Guru Rao, V. Shankar, “Computing Iceberg Queries Efficiently
Using Bitmap Index Positions” DOI: 10.1190/ICHCI-
IEEE.2013.6887811 Publication Year: 2013 ,Page(s): 1 – 6

[8] Vuppu.Shankar, Dr.C.V.Guru Rao,” Cache Based Evaluation of
Iceberg Queries”, IEEE International conference on Computer and
CommunicationsTechnologies(ICCCT),2014,DOI: 10.1109/ICCCT2.2
014.7066694 ,Publication Year: 2014

[9] Rao, V.C.S. , Sammulal, P.,” Efficient iceberg query evaluation using
set representation”,India Conference (INDICON), 2014 Annual
IEEE DOI: 10.1109/INDICON.2014.7030537 Publication Year:
2014 , Page(s): 1 – 5

[10] K.-Y. Whang, B.T.V. Zanden, and H.M. Taylor, “A Linear-Time
Probabilistic Counting Algorithm for Database Applications,” ACM
Trans. Database Systems, vol. 15, no. 2, pp. 208-229, 1990

[11] J. Bae and S. Lee, “Partitioning Algorithms for the Computation of
Average Iceberg Queries,” Proc. Second Int’l Conf. Data Warehousing
and Knowledge Discovery (DaWaK), 2000

[12] K.P. Leela, P.M. Tolani, and J.R. Haritsa, “On Incorporating Iceberg
Queries in Query Processors” Proc. Int’l Conf. Database Systems for
Advances Applications (DASFAA), pp.431-442, 2004

[13] Ying Mei, Kaifan Ji*, Feng Wang,” A Survey on Bitmap Index
Technologies for Large-scale Data Retrieval” 978-1-4799-2808-8/13
$26.00 © 2013

[14] F. Delie`ge and T.B. Pedersen, “Position List Word Aligned Hybrid:
Optimizing Space and Performance for Compressed Bitmaps,” Proc.
Int’l Conf. Extending Database Technology (EDBT), pp. 228-239,
2010

[15] A. Ferro, R. Giugno, P.L. Puglisi, and A. Pulvirenti, “BitCube: A
Bottom-Up Cubing Engineering,”Proc. Int’l Conf. Data Warehousing
and Knowledge Discovery (DaWaK), pp. 189-203, 2009

[16] R. Agrawal, T. Imielinski, and A. Swami, Mining Association Rules
Between Sets of Items in Large Databases. ACM SIGMOD Conf.
Management of Data, pages 207-216, 1993

[17] W., Perrizo, Peano Count Tree Technology, Technical Report NDSU-
CSOR-TR-01-1, 2001

Authors Profile

Dr. S.N.Zaware pursed Bachelor of Computer Engineering from
University of Pune in 1999 , Master in Computer Science and
Engineering from Swami Ramanand Theerth Marathwada
University in year 2005 and Ph.D. Computer Science and
Engineering from St.Peters Institute of Higher Education and
Research Chennai in 2018. She is a Life member of CSI,ISTE and
IAENG. She has published more than 20 research papers in reputed
international journals including SCOPUS Indexed Journal and
conferences including IEEE and SPRINGER it’s also available
online. Her main research work focuses on Query optimization ,data
ming ,machine learning and Big Data Analytics. She has 19 years of
teaching experience and 2 years of Research Experience.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7063672
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7063672
http://dx.doi.org/10.1109/ICCCT2.2014.7066694
http://dx.doi.org/10.1109/ICCCT2.2014.7066694
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Rao,%20V.C.S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sammulal,%20P..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7030537&searchField%3DSearch_All%26queryText%3DIceberg+Query+Evaluation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7030537&searchField%3DSearch_All%26queryText%3DIceberg+Query+Evaluation
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7016294
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7016294
http://dx.doi.org/10.1109/INDICON.2014.7030537

