

 © 2019, IJCSE All Rights Reserved 623

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-6, June 2019 E-ISSN: 2347-2693

An Analysis of Software Reliability Estimation Using Fuzzy Logic

Function With Cocomo II Model

Ritu

1*
, Kamna Solanki

2
, Amita Dhankhar

3
, Sandeep Dalal

4

1,2,3

Dept. of Computer Science and Engineering, UIET, MDU, Rohtak, India
4
Dept. of Computer Science and Engineering, MDU, Rohtak, India

Corresponding Author: Roseritu5@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i6.623626 | Available online at: www.ijcseonline.org

Accepted: 10/Jun/2019, Published: 30/Jun/2019

Abstract— Software cost estimation SCE is directly related to quality of software. The paper presents a hybrid approach that is

an amalgamation of algorithmic (parametric models) and non-algorithmic (expert estimation) models. Algorithmic model uses

COCOMO II while non algorithmic utilizes Neuro-Fuzzy technique that can be further used to estimate accuracy in irregular

functions. For generalization of the model, Neuro-fuzzy membership functions have been used and simulated using

mathematical tool MATLAB. The main objective of this research is to investigate the role of fuzzy logic technique in

improving the effort estimation accuracy using COCOMO II by characterizing inputs parameters using Gaussian, trapezoidal

and triangular membership functions and comparing their results. NASA (93) dataset is used in the evaluation of the proposed

Fuzzy Logic COCOMO II. After analyzing the results it had been found that effort estimation using Gaussian member function

yields better results for maximum criterions when compared with the other methods

Keywords— COCOMO II, Estimation, Neuro-Fuzzy, Reliability, Membership function, Soft Computing, Software Effort

Estimation, Gaussian Membership Function.

I. INTRODUCTION

Software development is becoming a necessity at a grandiose

rate among all types and size of organizations. Software

practitioners have become more and more apprehensive

about their software cost and development. Varied software

cost estimation models have been proposed over the past few

years. However, they are unable to cope with the realistic

realities of software engineering like handling imprecise

information, dealing with uncertainty and many more [1–4].

The model proposed in this manuscript has been validated

for its accuracy and estimation by using publicly available

NASA93 software project data consisting of 20 projects with

their values allocated to each cost driver. Results have been

tabulated after comparing basic COCOMO and proposed

fuzzy model. Results prove that the proposed model is more

accurate and precise due to machine learning algorithm

application that discovers knowledge and produces expertise

results. Basic COCOMO model generates assumption-based

results using historical data without applying any algorithms

or sets.

The rest of this paper is categorized as follows: Sect. 2

reviews available literature and work done in field of

software cost estimation. Section 3 describes easy and

efficient way of estimating software cost parameters by using

Costar software estimation tool based on COCOMO II

model. It depicts how parameters like effort, schedule are

estimated using pre-defined COCOMO equations.

An expert model that is combination of algorithmic approach

namely COCOMO II and machine learning algorithm

namely Neuro Fuzzy (NF) approach. The Size of Project and

Output of sub models Neuro Fuzzy acts as input to

COCOMO II model that is amalgamated with neuro fuzzy

technique and produces final cost metric.

II. SOFTWARE ESTIMATION

Software engineering is a type of engineering used for the

development of software product. It requires top-most degree

of analysis, hard work and the supervision of the two. With

expanding size and complexity of the software product, its

development has become a more difficult task which needs

to be taken care off. Hence there will be no perception

between the simple activity and complicated activity, both

can be equally taken care for an efficient software product.

Various difficulties which are being faced in the software

development process are quality degradation, cost over-run

and schedule over-run [1]. Apart from there difficulties faced

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 624

in the software development product there is another problem

which is poor estimation. If the estimation is not accurate it

will result into an ambiguity in the development process.

Effective estimation is beneficial for appropriate project

planning and control, although it is the most crucial and

difficult task in the development process. During under-

estimating project leads to quality degradation. However,

over-estimating is even worse than under-estimating as more

resources are allocated for the software development process

without any scope. Precise planning of the project and

tracing the on-going development process is the second

fundamental task which certify for the success of the project.

As estimates are accessible, next job is to allocate task to the

individuals. There will be constant evaluation of the

development process which is beneficial in determining

status of the developed project. Trailing the process will

provide possibility to the project manager to handle any

unexpected situation during the software development

process [2]. Proper management of any project will initiate

with proper estimation. An effective estimation is the

foundation for an effective software development process.

Without an effective estimation both project planning and

tracking of the development process are not possible. If the

estimates are depressed then project management will

employ more people in order to boost up the development

process otherwise it will lead in poor results of the

development process and employee disappointment [3].

Basic software estimations are:

Estimation of the cost

Estimation of the effort.

Estimation of the schedule.

Estimation of the size.

III. ESTIMATION METHODS IN SOFTWARE

ENGINEERING

These are methods used for estimating cost, effort, schedule

and size. This project is supported on COCOMO 2 model for

cost and effort estimation. There is an integration of all the

three models of the COCOMO 2 like application

composition, early design and Post architecture for

measuring various parameters. However, for size estimation,

function point analysis (FPA) is used.

Figure 1: Software Estimation Methods

In past numerous estimation techniques like COCOMO

(Constructive Cost Model), SEER (System Evaluation and

Estimation of Resources) and SLIM (Software life cycle

model) are developed which will opt mathematical model for

estimation. The methodology of these techniques will

consider related data of the project as their input and past

data of the projects is used for marking of the models [1].

In case when past data of the projects in not available then

expert knowledge is a criterion used for the estimation of the

software development process. There are two techniques

which will come under this class are Delphi and Rule-based.

Delphi technique is purely based on verdict of the expert

whereas rule-based technique is embraced from the Artificial

Intelligence (AI) in which mixture of rules will work

together to get the desired output [2].

A lot of research is done for the evolution of learning-based

techniques used for the software estimation. First, Neural

network which is outlined by three entities namely

interconnected Structure, neurons and learning algorithm is

one of the wide spread learning-based technique. Secondly,

Case-based technique which itself a type leaning based

technique in which database of the developed projects are

preserved and when developing a new project, it expected

development cost is compared with the database projects by

which there will be prediction on the cost measure of the

newly product which is going to be developed [3].

Regression methods like Ordinary least squares (OLS)

method and robust method are used in estimation of the

software product. Where robust method of regression will

solve the most familiar problem of outliers in the field of

software engineering data [4].

Model based techniques are commonly used in the industry

due to their independency with regard to previous

information and there is a perception that they will work on

fixed parameters relevant for the model therefore, being used

in the estimation of the software development product. In

this methodology, values of different standard parameters are

retrieved with reference to the project expectation. The

estimation of the software is calculated using the equations

defined in the model. Numerous tools are accessible in the

market for the process of software estimation [5].

There are three models of COCOMO II explained as follows:

i. Application Composition – This model is suitable for those

applications which can be fabricated by merging

prepackaged outcomes but can’t be developed by application

developers. This model will utilize object points

methodology for size valuation. It will measure size of any

tool on the basis of record and 3GL elements. Example - GUI

builders, Query browsers, Database managers etc.

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 625

ii. Early Design – This model can be utilized for application

creators, structure consolidation and framework growth

segments. It utilizes unadjusted function points for the size

assessment.

iii. Post Architecture – This model has identical methodology

as of COCOMO 81 and utilizes entirely 17 cost drivers for

software valuation and utilizes unadjusted function point and

source lines of code for size valuation

COCOMO 2

Various formula are used in the COCOMO 2 model are-

Estimated effort per months = A * (size) E where,

Value (constant set) = 2.94

Size = KLOC provided by the company

E = Estimated effort based on the 17 effort multipliers which

are grouped in 4 category which are explained as follows –

i. Product Attributes – Software Reusability, Database, and

complexity of the product.

ii. Computer Attributes – Execution time constant, Storage

and Total predicted time to complete software.

iii. Personal Attributes – Tool cost, Programmer capability

and Analyst capability.

iv. Project Attributes – Development time and Developed

version of software tool cost.

Formula used in the software reliability estimation –

i. Unadjusted Function Points = Σ (External Input) + Σ

(External Output) + Σ (External File) + Σ (External Inquiries)

+ Σ (Internal File).

ii. Degree of Influence= Σ General Application

Characteristics [i] where i = 1 to 14.

iii. Technical Complexity Factor = (0.65 + 0.01 * Degree of

Influence).

iv. Function Points = (Unadjusted Function Points *

Technical Complexity Factor)/100.

v. Person Month = New Object Points / Developer

experience and capability.

IV. CHARACTERISTICS OF SOFTWARE RELIABILITY

Failure occurs primarily due to design

faults:

For detecting the error, Design is modified for repairs to

make it powerful against conditions

4.2 There is no wear-out phenomenon:

1) Software bugs occur without any warning.

2) While doing reforms, “Old” code can result in more

number of failure rate because of errors.

3) External environment conditions generally not

affect the reliability of the software.

4) Internal environment related conditions, such as

inappropriate clock speeds or insufficient memory

affect software reliability.

4.3 Reliability is not time dependent

1) Failure happens due to the error prone execution

2) The growth of the reliability is observed as

errors are detected and corrected.

5. Software Reliability Activities

The software reliability process includes software

development, operations, and maintenance. A software

reliability process includes faults, defects, corrections, errors,

updating, and expenses on the resource, such as manpower

effort. Some of the

Reliability activities are as follows:

5.1 Construction: Generation of new documentation and

code artifacts

5.2 Combination: It forces on reusability of old documents

and code components with the new one.

5.3 Correction: Analyzing and removing document and code

related defects by analyzing the test items.

5.4 Preparation: Generating of different test items.

5.5 Testing: Test cases are executed, to know the trigger

points where failure occurs frequently.

5.6 Identification: Categorized each error or bug whether

new or previously

5.7 Repair: Faults are removed which possibly introduces

new faults for which regression testing is done.

5.8 Validation: Perform checks to make sure that repairs are

effective and have not affected other parts of the software.

5.9 Retest: implementation of the cases to check for specified

repair’s completion. If it is incomplete, new test cases may

be needed to repair them further.

V. RESULTS AND DISCUSSION

This paper will consider three different company with their

values like line of code, function points and actual efforts and

by applying formulae, predicted value of the estimation is

achieved. This company data is collected from google open

source and perform operations with the help of COCOMO 2

model and Fuzzy tools set.

Example set:

COMPANY

NAME

C1 C2 C3

LINE OF CODE 14000

12000 11000

FUNCTION

POINTS

218

187

185

ACTUAL

EFFORTS

38 32 30

COMPANY NAME

COCOMO PREDICTED

ESTIMATION

C1 33.54

C2 27.89

C3 18.32

 International Journal of Computer Sciences and Engineering Vol.7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 626

Final Result of the estimates quality of the project, here total

quality will be around 50.26 % performed on various

reliability factors.

VI. CONCUSION AND FUTURE WORK

Conclusion
To ensure the best quality of the software product, software
testing is an integral part of the software development
process. The main objective of this thesis was to design and
implement a testing process which is executed to check
whether the product is efficient or not. During the
development process, developer will perform various
operations which will check the reliability of the software
based on following parameters like efficiency,
maintainability, reliability, portability and usability. If the
developer finds that the product is not meeting the
requirements for the efficient system it will make changes to
the code with the help of COCOMO 2 model and neuro fuzzy
set. Various operations are performed by passing data set
values to check out the reliability in a pre- developed stage.

Parameters like function points, KLOC and actual efforts of

various companies are compared and reliability estimation is

predicted. This illustrates that 17 cost drivers are used along

with various programming languages with their UFP values.

Data sets are provided by the owner of the company on which

tester will perform operations to decide the reliability

estimation. Finally, after performing data set operations on

different parameters it will provide result in measure of the

overall quality of the software product.

FUTURE WORK

Another attempt can be added to future implementation for

representing the results more rigorously. This work can be

further enhanced by including more testing tools for

comparison so that, it could find more suitable testing tools

for testing the software testing. Further, some different

metrics can be used for performance evaluation so that results

could be more realistic and reliable. New testing issues can

arise which can be taken care off for an efficient software

product.

REFERENCES

[1] J. Gaffney (Jnr) and E. John, "Software Function Source Lines of Code
and Development Effort Prediction: A Software Science Validation",

IEEE Transactions on Software Engineering, vol. 9, issue-6, pp. 639-

647, 1983.
[2] R. Rombach and H. Dieter, "The TAME Project: Towards

Improvements Oriented Software Environments”, IEEE Transactions

on Software Engineering, vol. 14, issue-6, pp. 758-773, 1988.
[3] Symons and Charles R., "Function Point Analysis: Difficulties and

Improvements", IEEE Transactions on Software Engineering, vol. 14,

issue-1, pp. 2-10, 1988.

[4] Vahid, Khatibi, Dayang and N. A. Jawawi, “Software Cost Estimation

Methods: A Review”, Journal of Emerging Trends in Computing and

Information Sciences, vol. 2, issue-1, pp. 21-29, 2010.
[5] Randy K. Smith, Joanne E. Hale and Allen S. Parrish, “An Empirical

Study Using Task Assignment Patterns to Improve the Accuracy of

Software Effort Estimation”, IEEE Transactions on Software
Engineering, vol. 27, issue-3, pp. 264-267, 2011.

[6] Shubhangi Mahesh Potdar, Manimala Puri and Mahesh P. Potdar,
“Literature Survey on Algorithmic Methods for Software Development

Cost Estimation”, International Journal of Computer Technology &

Applications, vol. 5, issue-1, ISSN: 2229-6093, pp. 183-188, 2014.
[7] Chemuturi K.M, “Software Estimation Best Practices, Tools and

Techniques: A Complete Guide for Software Project Estimators”, J.

Ross Publishing Inc, pp. 49-65, 2009.
[8] Magne Jorgensen, “Practical Guidelines for Expert-Judgment-Based

Software Effort Estimation”, Simula Research Laboratory, IEEE,

pp.57-63, 2005.
[9] Vahid Khatibi, Dayang N. A. Jawawi “Software Cost Estimation

Methods: Review”, Journal of Emerging Trends in Computing and

Information Sciences, vol. 2, issue- 1, 2011.
[10] Matson J., Barrett B. and Mellichamp J., “Software Development Cost

Estimation Using Function Points”, IEEE Transactions on Software

Engineering, vol. 20, issue-4, pp. 275-287,1994.
[11] M. Shepperd and C. Schofield, “Estimating Software Project Effort

Using Analogies”, IEEE Transaction on software engineering, vol. 23,

pp. 736-743, 1997.
[12] C. S. Reddy and K. Raju, “A Concise Neural Network Model for

Estimating Software Effort”, International Journal of Recent Trends in

Engineering, vol. 1, pp. 188-193, 2009.
[13] F. J. Heemstra, “Software cost estimation, Information and Software

Technology”, vol. 34, pp. 627-639, 1992.

[14] L. Lederer and J. Prasad, “Causes of Inaccurate Software Development
Cost Estimates”, Journal of Systems and Software, vol. 31, pp. 125-

134, 1995.

[15] Chetan Nagar, “Software efforts estimation using Use Case Point
approach by increasing technical complexity and experience factors”,

International Journal of Computer Sciences and Engineering,

ISSN:0975-3397, vol.3, issue-10, pp. 3337-3345, 2011.
[16] N. Karunanitthi, D. Whitley and Y.K Malaiya, “Using Neural

Network in Reliability Prediction”, IEEE Transaction on software

engineering, vol. 9, issue-4, pp. 53-59, 1992.
[17] T. J. Mc Cabe, “A complexity measure”, IEEE Transaction on

software engineering vol. 2, issue-4, pp. 308-320, 1976.

[18] A.J. Albrecht and J. E. Gaffney, “Software function, source lines of
code and development effort prediction: A software science

validation”, IEEE Transaction on Software Engineering, vol. 9, issue-

6, pp. 639-647, 1983.

