ICSE International Journal of Computer Sciences and Engineering Open Access

Research Paper

Vol.-7, Issue-6, June 2019

E-ISSN: 2347-2693

I-DBSCAN Algorithm with PSO for Density Based Clustering

Neha^{1*}, Prince Verma²

^{1,2}Dept. of Computer Science Engineering, CT Institute of Engineering Management & Technology, Jalandhar, India

Corresponding author: neha47025@gmil.com

DOI: https://doi.org/10.26438/ijcse/v7i6.627632 | Available online at: www.ijcseonline.org

Accepted: 11/Jun/2019, Published: 30/Jun/2019

Abstract :- The data mining is the approach which extracts useful information from the rough information. The clustering is the approach of data mining which cluster the similar and dissimilar type of information. The clustering techniques is of various type which hierarchal clustering, density based clustering and so on. The IDBSCAN algorithm is the density based clustering algorithm. The density based clustering has the various algorithms. In this research work, the I-DBSCAN algorithm is improved using the PSO algorithm to increase accuracy of clustering. The proposed methodology is implemented in MATAB and results are analyzed in terms of accuracy.

Keywords:- Clustering, Hierarchal, I-DBSCAN, PSO (Particle Swarm Optimization).

I. **INTRODUCTION**

Data mining is viewed as a result of the natural evolution of information technology. The early development of data collection and database creation mechanisms proved to be important for the later development of effective mechanisms for data storage and retrieval, query and transaction processing. The database and data management industry evolved in the development of several critical functionalities: data collection and database creation, data management and advanced data analysis (involving data warehousing and data mining) [1]. One of the emerging data repository architecture is the data warehouse. It involves multiple heterogeneous data sources organized under a unified schema at a single site to manage decision making. Data cleaning, data integration, and online analytical processing (OLAP) are involved in Data warehouse technology [2]. OLAP basically is analysis techniques with functionalities for example, summarization, consolidation, and aggregation. It can also be known as the ability to view information from different angles. The effective and efficient analysis of data from such different forms of data by integration of information retrieval, data mining, and information network analysis technologies has proven to be a challenging task. Data mining is the duty of discovering interesting patterns from large amounts of data where the data can be stored in databases, data warehouses and repositories of other information [3]. It is also commonly referred to as knowledge discovery in databases (KDD). Data mining involves an integration of techniques from number of disciplines such as statistics, database technology, machine learning, neural networks, high-performance computing and pattern matching, data visualization, information recovery etc. Cluster analysis has been widely used in numerous

applications, including market research, pattern recognition, data analysis, and image processing [4]. In business, clustering can help marketers discover interests of their customers based on purchasing patterns and characterize groups of the customers. In biology, it can be used to derive plant and animal taxonomies, categorize genes with similar functionality, and gain insight into structures inherent in populations [5]. In geology, specialist can employ clustering to identify areas of similar lands; similar houses in a city and etc. data clustering can also be helpful in classifying documents on the Web for information discovery. Data clustering (or just clustering), is an unsupervised classification method [6]. This method aims at creating groups of objects or clusters, in such a way that objects in the same cluster are very similar and objects in different clusters are quite distinct. Cluster analysis is one of the traditional topics in the data mining field. It is the first step in the direction of exciting knowledge discovery. The procedure of grouping data objects into a set of disjoint classes, called clusters is known as clustering [7]. Now objects within a class have high resemblance to each other in the meantime objects in separate classes are more unlike. Clustering is a technique used to group similar documents, however it differs from classification of documents are clustered on the fly instead of using predefined topics [8]. Another advantage of clustering is that documents can appear in multiple subtopics, in this manner guaranteeing that a helpful document won't be misplaced from indexed lists. A fundamental clustering algorithm shapes a vector of topics for every document and measures the weights of how healthy the document fits into every cluster [9]. Clustering goes under unsupervised classification. Classification alludes to a technique that assigns data objects to a set of classes.

International Journal of Computer Sciences and Engineering

Unsupervised clustering means that clustering does not rely on predefined classes and training. Unsupervised clustering is not the same as pattern reorganization in the area of statistics known as discriminate analysis and decision analysis which arrange the objects from a given set of object [10]. Density based clustering algorithms have a wide applicability in data mining. They apply a local criterion to group objects: clusters are viewed as regions in the data space where the objects are dense, and which are separated by regions of low object density (noise) [11]. Among the based clustering algorithms DBSCAN density is exceptionally well known due both to its low complexity and its capacity to detect clusters of any shape, which is a desired characteristics when one doesn't have any knowledge of the possible clusters' shapes, or when the objects are circulated heterogeneously, for example, along paths of a graph or a road network [12]. In any case, to drive the process, this algorithm needs two numeric input parameters, minPts and together characterize the desired which density characteristics of the generated clusters. In particular, minPts is a positive integer determining the minimum number of objects that must exist inside a maximum distance of the data space all together for an object to have a place with a cluster [13]. Since DBSCAN is extremely sensible to the setting of these input parameters they should be picked with incredible accuracy by considering both the scale of the dataset and the closeness of the objects all together not to affect an excessive amount of both the speed of the algorithm and the effectiveness of the outcomes.

II. LITERATURE REVIEW

Guangchun Luo, et.al, (2016) proposed a parallel DBSCAN algorithm (S_DBSCAN) based on Spark, which can quickly realize the partition of the original data and the mix of the clustering results. It is divided into the three strides [14]. First, partitioning the raw data based on a random sample, then computing local DBSCAN algorithms in parallel, third, merging the data partitions based on the centroid. Compared with the traditional DBSCAN algorithm, the experimental result demonstrates the proposed S DBSCAN algorithm gives better operating efficiency and scalability. This paper evaluates the S_DBSCAN algorithm by dealing with annual outpatient data. The experimental result demonstrates the proposed S_DBSCAN algorithm can effectively; and efficiently; generates clusters and identify noise data. In short, the S_DBSCAN algorithm has superior performance when dealing with massive data, as compared to existing parallel DBSCAN algorithms.

Dianwei Han, et.al, (2016) studied that DBSCAN algorithm has been extremely famous since it can identify arbitrary shaped clusters and additionally handle noisy data. Be that as it may, parallelization of DBSCAN based on MPI and Open MP suffers from lack of fault-tolerance. Also, in order to

© 2019, IJCSE All Rights Reserved

implement parallelization with MPI or Open MP, data scientists need to deal with implementation in detail [15]. This paper presented another Parallel DBSCAN algorithm with Spark. It maintains a strategic distance from the communication amongst executors and in this way prompts to a better scalable performance. The results of these analyses demonstrate that the new DBSCAN algorithm with Spark is scalable and outperforms the implementation based on Map Reduce by a factor of more than 10 in terms of efficiency.

Nagaraju S, et.al, (2016) proposed an efficient approach for clustering analysis to detect embedded and nested adjacent clusters utilizing idea of density based notion of clusters and neighborhood difference. The experimental results that suggested that proposed algorithm is more effective in detecting embedded and nested adjacent clusters compared both DBSCAN and EnDBSCAN without adding any additional computational complexity [16]. Additionally the paper has preset method to evaluate the global density parameters utilizing sorted k-distance plot and first order derivative. Through this paper the notion of density based approaches for data clustering and thought of neighborhood difference is utilized effectively detect embedded and nested adjacent clusters. Our experimental results suggested that proposed algorithm effective in detecting nested adjacent clusters compared to DBSCAN and EnDBSCAN algorithm with computational complexity as same as DBSCAN algorithm.

Jianbing Shen, et.al, (2016) proposed a real-time picture superpixel segmentation method with 50fps by utilizing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. In order to decrease the computational costs of superpixel algorithms, the method received a quick two-stage framework [17]. A robust and straightforward distance function is defined for getting better superpixels in these two stages. The experimental results demonstrate that our real-time superpixel algorithm (50fps) by the DBSCAN clustering outperforms the state-of-the-art superpixel segmentation methods in terms of both accuracy and efficiency. This algorithm achieves the state-of-the-art performance at a considerably smaller calculation cost, and significantly outperforms the algorithms that require more computational costs even for the pictures including complex objects or complex texture regions.

Ilias K. Savvas, et.al, (2016) designed a three phase parallel version of DBSCAN [18]. The obtained experimental results are exceptionally promising and demonstrate the correctness, the scalability, and the effectiveness of the technique. In this work, a parallel version of the notable DBSCAN was presented and implemented utilizing MPI. The results obtained from various concrete examples proved that were identical with the results delivered by the application of the

original sequential technique. The time complexity reduced dramatically and the experimental results demonstrated that the algorithm scales in an exceptionally efficient manner.

Ahmad M. Bakr, et.al, (2014) proposed an enhanced version of the incremental DBSCAN algorithm for incrementally building and updating arbitrary shaped clusters in extensive datasets. The proposed algorithm enhances the incremental clustering process by limiting the search space to partitions as opposed to the whole dataset which results in significant improvements in the performance compared to relevant incremental clustering algorithms [19]. Experimental results with datasets of various sizes and dimensions demonstrate that the proposed algorithm speeds up the incremental clustering process by factor up to 3.2 compared to existing incremental algorithms. The proposed algorithm is additionally proved to perform better in expansive datasets with higher dimensions compared to related algorithms.

Saefia Beri, et.al, (2015) proposed a framework of methodology of DBSCAN algorithm with the integration of fuzzy logic. The degree to which an object belongs to a particular cluster will be resolved utilizing membership values [20]. The improved version of DBSCAN algorithm will be the hybridization of DBSCAN algorithm with fuzzy if-then rules. To enhance the degree of membership, multivalent logic will mull over in which the membership values are to be utilized. This algorithm will be consolidated with fuzzy if then rules for breast cancer detection. With this improved hybrid DBSCAN algorithm, certain parameters, for example, accuracy, geometric accuracy, bit error rate, specification, and sensitivity and error rate will be evaluated and the results will be compared over the DBSCAN algorithm. The hybridization will allow DBSCAN to choose the cluster in more efficient manner.

Karlina Khiyarin Nisa, et.al, (2014) designed a web-based application clustering with DBSCAN algorithm utilizing the R programming language with Shiny framework. DBSCAN needs minPts and Eps parameter [21]. The bigger values of minPts will create less, however more the number of noises. While the bigger value of Eps will result in less clusters. MinPts parameter determination is finished by taking a gander at the dimensions of the data and plot the graph of minPts and the number of clusters and noise. While Eps parameter determination is obtained from k-dist graph observation and the slope difference calculations.

III. PROPOSED WORK

The density based clustering is the type of clustering in which clusters are formed based on the data density. The I-DBSCAN algorithm uses the two values which are EPS and Euclidian distance. The EPS value defines the radius of the cluster. In the previous research work, the EPS value defines the radius of the data statically. The PSO algorithm is defined in this work which calculates the EPS value dynamically. The PSO includes a dynamic definition of the objective function. Based on the value of swarm, comparisons are done against the current iteration and previous iteration. The swarm value that has the highest iteration is considered for identifying the objective function. The description of objective function which is dynamic is shown in the below equation. The value is changed once each iteration is executed.

 $v_{i+1} = v_i + c * rand * (p_{best} - x_i) + c * rand * (g_{best} - x_i)$ Here, the velocity of element is represented by V_i, and the best value among available options is denoted by p_{best} . The random number is represented as rand. x is the value provided for each attribute of the website and c variable is used to define it. This process chooses the best value identified from every population and represents it as p_{best} . g_{best} is the best value that is chosen from every iteration. The value that is achieved is added with the traversing value of each attribute to finalize the objective function as shown in the equation below.

$x_{i+1} = x_i + v_{i+1}$

The position vector is denoted here by $x_{(i+1)}$. PSO algorithms that are dynamic with respect to the calculated best value are used to solve such multi-objective optimization problems. The data used for encryption is given as input by PSO. The key that is used for encryption helps in generating the optimized value.

International Journal of Computer Sciences and Engineering

Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

Fig 1: Proposed Work

IV. RESULT AND DISCUSSION

This research work is related improve the performance of I-DBSCAN algorithm for the density based clustering. The PSO algorithm is applied with the I-DBSCAN algorithm to increase accuracy of density based clustering. The performance of both algorithms are analyzed in terms of accuracy and execution time.

•		tool	- 🗆 🗙
	Enhancement	in I-DBSCAN Algorit	thm
	Basepaper Algorithm	Proposed Algorithm	
	Performance Analysis	Ext	

Fig 2: Default Interface

As shown in figure 2, the I-DBSCAN algorithm is implemented for the density based clustering. The improved version of I-DBSCAN algorithm is generated by applying PSO algorithm.

Fig 3: Result of Proposed Algorithm

As shown in figure 3, the improved version of I-DBSCAN algorithm is generated with PSO algorithm. The PSO value defines EPS value for the clustering. The final clusters are shown in the above figure

Fig 4: Accuracy Analysis

As shown in figure 4, the accuracy of I-DBSCAN and enhanced I-DBSCAN is compared for the analysis. It is analyzed that accuracy of enhanced algorithm is upto 93 percent

V. CONCLUSION

In this work, it is concluded that clustering is the approach of data mining which is applied to cluster similar and dissimilar information. The density based clustering is the approach which cluster information based on the density of the data. The I-DBSCAN is the algorithm of density based clustering which cluster data based on the cluster radius and distance. The enhanced I-DBSCAN algorithm is proposed in this research work which gives accuracy up to 93 percent for the clustering.

References

- [1] Anand M. Baswade, Kalpana D. Joshi and Prakash S. Nalwade, "A Comparative Study Of K-Means and Weighted K-Means for Clustering," International Journal of Engineering Research & Technology, Volume 1, Issue 10, December-2012
- [2] Neha Aggarwal, Kirti Aggarwal and Kanika Gupta, "Comparative Analysis of k-means and Enhanced K-means clustering algorithm for data mining," International Journal of Scientific & Engineering Research, Volume 3, Issue 3, August-2012
- [3] Ahamed Shafeeq B M and Hareesha K S, "Dynamic Clustering of Data with Modified Means Algorithm," International Conference on Information and Computer Networks, Volume 27, 2012
- [4] Manpreet Kaur and Usvir Kaur, "Comparison Between K-Mean and Hierarchical Algorithm Using Query Redirection", International Journal of Advanced Research in Computer Science and Social, Volume 3, Issue 7, July 2013 ISSN: 2277 128X
- [5] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu Christine, D. Piatko, Ruth Silverman and Angela Y. Wu, "An Efficient K-Means Clustering Algorithm: Analysis and

Implementation," IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 24, July 2002

- [6] Amar Singh and Navot Kaur, "To Improve the Convergence Rate of K-Means Clustering Over K-Means with Weighted Page Rank Algorithm," International journal of Advanced Research in Computer Science and Software Engineering, Volume 3, Issue 8, August 2012
- [7] Amar Singh and Navot Kaur, "To Improve the Convergence Rate of K-Means Clustering Over K-Means with Weighted Page Rank Algorithm," International journal of Advanced Research in Computer Science and Software Engineering, Volume 3, Issue 8, August 2012.
- [8] Harpreet Kaur and Jaspreet Kaur Sahiwal, "Image Compression with Improved K-Means Algorithm for Performance Enhancement," International Journal of Computer Science and Management Research, Volume 2, Issue 6, June 2013
- [9] Osamor VC, Adebiyi EF, Oyelade JO and Doumbia S "Reducing the Time Requirement of K-Means Algorithm" PLoS ONE, Volume 7, Issue 12, 2012
- [10] Azhar Rauf, Sheeba, Saeed Mahfooz, Shah Khusro and Huma Javed, "Enhanced K-Mean Clustering Algorithm to Reduce Number of Iterations and Time Complexity," Middle-East Journal of Scientific Research, pages 959-963, 2012
- [11] Kajal C. Agrawal and Meghana Nagori, "Clusters of Ayurvedic Medicines Using Improved K-means Algorithm," International Conf. on Advances in Computer Science and Electronics Engineering, 2013.
- [12] M. N. Vrahatis, B. Boutsinas, P. Alevizos and G. Pavlides, "The New k-Windows Algorithm for Improving the k-Means Clustering Algorithm," Journal of Complexity 18, pages 375-391, 2002.
- [13] Chieh-Yuan Tsai and Chuang-Cheng Chiu, "Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm," Computational Statistics and Data Analysis, pages 4658-4672, Volume 52, 2008
- [14] Guangchun Luo, Xiaoyu Luo, Thomas Fairley Gooch, Ling Tian, Ke Qin," A Parallel DBSCAN Algorithm Based On Spark", 2016, IEEE, 978-1-5090-3936-4
- [15] Dianwei Han, Ankit Agrawal, Wei-keng Liao, Alok Choudhary," A novel scalable DBSCAN algorithm with Spark", 2016, IEEE, 97879-897-99-4
- [16] Nagaraju S, Manish Kashyap, Mahua Bhattacharya," A Variant of DBSCAN Algorithm to Find Embedded and Nested Adjacent Clusters", 2016, IEEE, 978-1-4673-9197-9
- [17] Jianbing Shen, Xiaopeng Hao, Zhiyuan Liang, Yu Liu, Wenguan Wang, and Ling Shao," Real-time Superpixel Segmentation by DBSCAN Clustering Algorithm", 2016, IEEE, 1057-7149
- [18] Ilias K. Savvas, and Dimitrios Tselios," Parallelizing DBSCAN Algorithm Using MPI", 2016, IEEE, 978-1-5090-1663-1
- [19] Ahmad M. Bakr , Nagia M. Ghanem, Mohamed A. Ismail," Efficient incremental density-based algorithm for clustering large datasets", 2014, Elsevier Pvt. Ltd.
- [20] Saefia Beri, Kamaljit Kaur," Hybrid Framework for DBSCAN Algorithm Using Fuzzy Logic", 2015, IEEE, 978-1-4799-8433-6
- [21] Karlina Khiyarin Nisa, Hari Agung Andrianto, Rahmah Mardhiyyah," Hotspot Clustering Using DBSCAN Algorithm and Shiny Web Framework", 2014, IEEE, 978-1-4799-8075-8

International Journal of Computer Sciences and Engineering

Authors Profile

Miss. Neha pursed Bachelor of technology in informatiom technology from DAVIET & jalandhar, punjab, India in 2017. She is currently pursuing Master of Technology in computer Science Engineering from CTIEMT, Jalandhar,Punjab, India. Her email contact as Neha47025@gnail.com. Her main research work focuses on data

mining, big data analytics, Machine learning algorithms, and I-DBSCAN Algorithm with PSO for Density Based Clustering.

Mr. Prince verma pursed B.tech degree in Computer science and Engineering From MIMIT, Malout, Punjab, India in 2008 and M.tech in computer science and engineering in 2013 from DAVIET, Jalandhar, Punjab, India. He is currently purusing his PHDin the areas of big data

analytics from IKG Punjab technical University, Kapurthala, Punjab, India . He is currently the head and assistant Professor in the department of computer science and engineering at CTIEMT, Lalandhar, Punjab, India . His research interest lies in data mining algorithm optimization techniques, big data Analytics. He has more than 35 research publicatons in reputed international journals.