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Abstract Text mining is a Computer Science technique to analyze text data.  Text mining is text analysis, is the process of 

deriving high quality information from text. Text mining is to convert text into data for suitable analysis. It allows us to 

investigate relationship among patterns which would otherwise be extremely difficult. Various techniques are used to mining 

the frequent patterns in the given text which are applicable to analyze the information in huge documents. The parallel 

construction of FP-Trees and parallel mining on multi cores is a popular tree projection based mining algorithm. Once each 

processor counts the frequency of each item using its local data partition, all worker processors send the local count to the 

master processor which combines them and generate global count. The parallel implementation of FP-tree may show good 

speedups but sending the local results to master on distributed environment and merging the patterns count on master core are 

overhead which consumes a considerable time. This study aims at  to analyze various frequent pattern mining techniques used 

to extract information from texts especially on multi cores and going to adopt a new technique for finding frequent patterns, 

which used the  Dictionary based  compression algorithm(LZW). The new technique is implemented with single processor as 

so as with multi processor using message passing technique. The main objective of this research is enhancing the speed and 

reduce the memory consumption required to extract the frequent patterns form the given textual data. The parallel 

implementation of our proposed LZW based algorithm with three datasets Webdoc, Kosarak and Trump  is compared with 

parallel implementation of FP-Growth on single and multi core. The results shows good performance in  speedup, Latency and 

Efficiency in  proposed LZW based algorithm. 
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I. INTRODUCTION 

 

Recent technological improvements have led to the 

availability of new type of information that was previously 

not available. The modern database includes both standard 

structure of data and unstructured data comprising words, 

images, and videos. New sources of text data such as text 

messages, social media activity, web searches and blogs. The 

tremendous availability of published texts, sophisticated 

technologies and interest in extracting information from text 

has led to replacing the human effort with automatic systems. 

Now a day’s greater understanding of the text mining has led 

government authorities and private sectors to use this 

developing technology. The National Center for Text mining 

(NaCTem) is the first public funded text mining center in the 

world established by United Kingdom, operated by university 

of Manchester. Text analyzing text data is an one of the main 

element of Big data trends.  

 

Text mining is to convert text into data for suitable analysis. 

There is a need for computational Artificial intelligence 

algorithms and statistical techniques to text documents. 

Various text mining techniques like Information Extraction, 

Information Retrieval, categorization and Clustering are used 

to extract useful information from Text data. The result of 

text mining could make text data as informative one. It allows 

us to investigate relationship among patterns which would 

otherwise be extremely difficult. With text mining, the text 

can be categorized and clustered which producing results 

such as word frequency count and predictions analysis.   

 

An important subfield of data mining that is called pattern 

mining.  Pattern mining consists of using data mining 

algorithms to discover interesting, unexpected and useful 

patterns in databases. Pattern mining algorithms can be 

applied on various types of data such as transaction 

databases, sequence databases, streams, strings, spatial data, 

and graphs. A wide variety of algorithms will be covered 

starting from Apriori. Many algorithms such as Eclat, 

TreeProjection, and FP-growth. 

 

What is an interesting pattern? There are several definitions. 

For example, some researchers define an interesting pattern 

as a pattern that appears frequently in a database. Other 
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researchers want to discover rare patterns, patterns with a 

high confidence, the top patterns, etc. The problem of 

frequent pattern mining has been widely studied in the 

literature because of its numerous applications to a variety of 

data mining problems such as clustering and classification. In 

addition, frequent pattern mining also has numerous 

applications in diverse domains such as spatiotemporal data, 

software bug detection, and biological data. The algorithmic 

aspects of frequent pattern mining have been explored 

widely. 

 

Applying above pattern mining algorithms on multi cores 

using shared memory are now a day’s ubiquitous. The 

parallel approaches to the frequent item sets using FP-Tree 

algorithm is a fast and popular tree projection based mining 

algorithm. Building several local FP- trees on multi cores 

parallel until all the frequent patterns are generated. The 

parallel algorithms with good workload balance provide 

higher speedups when are compared to sequential algorithm. 

The parallel implementation of FP-Trees and parallel mining 

on multi cores is a popular tree projection based mining 

algorithm. Once each processor counts the frequency of each 

item using its local data partition, all worker processors send 

the local count to the master processor which combines them 

and generate global count after the master processor removes 

the item with support count less than minimum support 

threshold. Once a complete frequent item set is constructed, it 

will broadcast to all the processors to the group. The parallel 

implementation of FP-tree may show good speedups but 

sending the local results to master on distributed environment 

and merging the patterns count on master core are overhead 

which consumes a considerable time. 

 

One of the basic methods of parallel computing is the use of 

message passing. It is a transfer of data between instances of 

parallel program running on multiple processors in a parallel 

computing   architecture. Parallel computers have two basic 

architectures Distributed memory and Shared memory. 

 

We need algorithms that do not require multiple scans of the 

data base and leave small foot print in main memory at a 

given time. There are three factors initiate this research 

undertaken.  

 

First one is the construction of FP-Tree on FP-Growth 

algorithm may not fit in memory also expensive to build.  So, 

there is a need to minimize the consumption of memory. In 

FP-Growth algorithm, the construction of FP tree for each 

transaction will be in need of adding new nodes with existing 

ones of the tree. It is somewhat difficult to understand by the 

beginners. If transaction table has too many transaction ids 

then the tree will be large. So the second aim is to give an 

easy algorithm which is easily understood by the users. While 

we compare the speed of the algorithms Apriori, Eclat and 

FP-Growth, the FP-Growth gives high speed ups than the 

other two. But when Fp-Growth is applied with huge 

database speed is slow. So, the third aim is to improve the 

speed. 

 

The main objective of this paper is to improve the 

speed of mining work to extract frequent patterns from a 

given text mining by the parallel mode of   work allotment on 

multi processors which are coordinating with each other by 

passing the messages among them to update the frequent 

pattern tables within them.  

 

The paper is organized as follows: section1 is Introduction; 

section 2 is the literature survey where various related works 

of the authors are discussed in detail. section 3 describes 

about the Methodologies used. section4 is discussed about 

Results Analysis and  section5 is the Conclusion of the 

discussions.   

 

II. LITERATURE SURVEY 

    

A manual literature search was conducted to identify the 

literature available on various facets of the topic and to select 

relevant resources for the review. The search was performed 

using various Google Scholar search engine and various 

electronic databases also utilized. Keywords used included 

frequent pattern mining (FPM), Parallel pattern mining 

techniques, message passing multiprocessor systems etc. The 

search was limited to resource in the English language and 

was conducted over the period 1994 to2018. The researcher 

also referred list of relevant articles and particular resources 

were focused through on line.   

 

This literature review begins with an overview of frequent 

pattern mining techniques which are already existed to assist 

the text mining process. The overview is followed by a 

discussion of the parallel FPM conceptual framework of this 

study. The factors influencing on parallel FPM are discussed 

within the theoretical framework and the various algorithms 

used for parallel FPM are also presented. 

 

Frequent pattern mining on Text mining is an important tool 

to establish the incidence of patterns, which are used to 

extract frequent information from the text. Pattern mining is 

an important subfield of data mining. Various pattern mining 

algorithms can be applied on various types of data such as 

transaction databases, sequence databases, strings, spatial 

data, streams and graphs  (CC Aggarwal, 2007). A range of 

widely used algorithms for finding frequent pattern on large 

transactional database (Sharmila Nasreen et.al. 2014).  

Apriori algorithm, Frequent Pattern Growth algorithm, Rapid 

Association Rule Mining (RARM), ECLAT algorithm and 

Associated Sensor Pattern Mining of Data Streams (ASPMS) 

Frequent pattern algorithms. The study focused on strength 

and weakness on each algorithm. The techniques used by 

Apriori are Breadth first search, RARM is Depth first search, 

FP-Growth used Divide and conquers. Regarding the data 

base scan Apriori Scans the database each time when the 
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candidate key is generated. RARM scans few times to 

construct SOTriel tree. Apriori takes considerable execution 

time. The other algorithms execution time is less than 

Apriori. The major drawback of Apriori algorithm has to 

generate too many candidate itemset. ECLAT requires virtual 

memory to perform transformation. The construction of FP 

Tree in FP growth algorithm is expensive to build and it 

consumes more memory. The entire above frequent pattern 

algorithms can be applied for text mining. 

 

Frequent Keyword Mining (FKM) is a useful tool for 

discovering frequently occurring keywords in data [1]. Many 

algorithms like Apriori, RARM and FP Growth have been 

developed to speed up mining performance on single core 

systems. When the data set size is huge it is good to 

parallelize FP-Growth algorithm on multi core machines. 

Partitioning the large database into number of cores and 

utilize the combined strength of all the cores to achieve 

maximum performance. 

One of the major problems in frequent itemset mining is the 

explosion of the number of results which is directly effecting 

on the execution time of itemset mining algorithms[2]. To 

address this problem, closed itemsets have been proposed, 

which provides concise lossless representations of the 

original collection of frequent itemsets. 

 

Associated Rule mining (ARM) is one of the fundamental 

tasks in data mining. It’s first application for the analysis of 

sales basket data which was introduced by Agarwal et al[3].  

The important problems in data mining are discovering 

association rules from databases of transactions where each 

transaction consists of a set of items[4]. The most time 

consuming operation in this discovery process is the 

computation of the frequency of the occurrences of 

interesting subset of items (called candidates) in the database 

of transactions. Mining frequent patterns in transaction 

databases, time series databases, and many other kinds of 

databases has been studied popularly in data mining research 

[5]. Most of the previous studies adopt an Apriori-like 

candidate set generation-and-test approach. However, 

candidate set generation is still costly, especially when there 

exist long pattern. 

 

Efficient utilization of shared memory MIMD parallelism is 

essential to improve the overall performance(L. Liu et al., 

2007) as the large data movement and communication 

requirements of parallel association rule mining can be 

performed seamlessly exploiting the underlying shared 

memory [6].  

FP-growth is usually a selection for large-scale mining 

applications due to its performance merits. In addition, the 

divide-and-conquer approach of FP-growth naturally lends 

itself to parallelism. Several parallel methods inspired by FP-

growth  have been proposed for shared memory multi-core 

systems. In the traditional FP-growth-based parallel 

approach, parallel processes cooperatively build a shared 

global FP-tree resulting in extensive use of costly 

synchronization locks to access each node of the tree[7]. A 

different approach called Tree Projection partitions the FP-

tree into subsections with small portions shared among 

processes. Only access to the small shared sections would 

require locks for synchronization [8]. Although this approach 

reduces the synchronization cost considerably, it adds the 

overhead of extra partitioning of the workload and is harder 

to load balance. 

 

Many of the methods for ARM have shown unstable 

performance for different database types and under utilize the 

benefits of multicore shared memory machines[9]. The 

proposed method, named ShaFEM, combines two mining 

strategies and applies the most appropriate one to each data 

subset of the database to efficiently adapt to the data 

characteristics and run fast on both sparse and dense 

databases. The ShaFEM[10]  uses a new data structure named 

XFP-tree that is shared among processes to compact data in 

memory. 

 

The characteristics of these data structures and the behaviors 

of their mining methods are quite different and will result D 

is scanned to specify all frequent items (or 1-itemsets) in D 

based on the minsup value. After this step, only data of 

frequent items are used to determine the frequent itemsets as 

well as to generate the association rules. This considerably 

reduces the memory usage and computation by avoiding a 

large amount of infrequent data from in different performance 

for a given database[11].  For example, algorithms like 

Apriori [12], FP-growth[13]  and those making use of FP-

array data structure[14] exploit horizontal format of data and 

perform efficiently on sparse databases (e.g. web document 

data or retail data) while Eclat [15] present data in a vertical 

format and run faster on the dense ones (e.g. biological 

sequence data). These mining methods perform unstably on 

differentdata types. Furthermore, the characteristics of data 

subsets D used to mine (k +1)-itemsets can change from very 

sparse to very dense as mining proceeds. Hence, applying a 

suitable mining strategy for each D is essential to improve the 

performance of ARM. It leads to the introduction of our 

parallel mining approach employing two mining strategies 

based on the characteristics of D. For large-scale 

transactional databases, apply parallel computing to speed up 

the mining. 

III.    METHODOLOGY 

 

FREQUENT ITEMSET GENERATION   

Frequent items play an essential role in many Data Mining 

tasks that try to extract interesting patterns from databases. 

The association rule mining is one of the most popular 

problems of all these. The most basic tasks in Data Mining is   

identification of sets of items, products, symptoms and 
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characteristics, which often occur together in the given 

database.  The motivation for searching frequent sets came 

from the need to analyze the supermarket transaction data, 

that is, to analyze the customer behavior in terms of the 

purchased products.  Frequent sets of items describe how 

often items are purchased together. Text mining is a 

technique that is used to extract useful information from large 

amount of data sets.  Data mining rules like frequent pattern 

and association rule that is important for finding frequent 

patterns. The apriori based and tree structure-based 

algorithms are used in frequent pattern mining.. The tree 

structure-based algorithm is FP-Growth.  

 

Apriori algorithms Frequent itemset generation: 

Apriori is the first algorithm for finding frequent items. 

Apriori algorithm was invented by Rakesh Agarwal and 

Ramakrishnan Srikant[16]. It is a well known algorithm in 

data mining. It was originally applied to market basket 

transactions. Frequent itemsets generation of the Apriori 

algorithm is using a general transaction database. Each row in 

the table represents a transaction, which contains unique 

transaction identification number (TID) along with items. But 

it takes more time for finding the frequent item sets. It has to 

scan the database again and again which is consumes lot of 

time. Apriori uses a “bottom up” approach, where frequent 

subsets are extended one item at a time 

 

Frequent itemset generation with Eclat algorithm: 
Eclat (Equivalent Class Clustering and bottom up Lattice 

Traversal) algorithm is a data mining algorithm used to find 

frequent items from large amount of database. The limitations 

of Apriori algorithm is reduced by using vertical dataset 

which reduces the access time. Eclat algorithm finds the 

elements from bottom like depth first search. It is a simple 

algorithm not using horizontal database. It counts the support 

but not calculate the confidence.  Both Apriori and FP-

Growth use horizontal data format. 

 

Frequent itemset mining with FP-Growth algorithm: 
 FP-Growth algorithm has an improvement over above two 

algorithms for finding frequency itemset in a database 

without candidate key generation. It was proposed by Han. It 

is fast and consumes less memory than Apriori. It constructs 

a special internal structure called FP-tree. It is a two step 

approach  

 

Step1. Build a data structure called FP-Tree. 

 

Step2: Extract the frequent items from FP-Tree. 

 

FP-Tree construction has two passes. On pass1  It scan and 

find the support of each item then  discard the infrequent 

items after that it arranged the frequent items in descending 

order based on the support. 

On pass2 FP-Growth reads one transaction at a time maps it 

with path which can overlap when transactions share items. 

Pointers are used between nodes. 

 

Experimental datasets  

The performance in terms of execution time of three states of 

art methods such as Apriori , Eclat  and FP-growth  on  

experimental dataset is shown in the  table3.10. From the 

results, it is found that while FP-growth runs fastest on the 

sparse and dense dataset compared to other two methods. 

Hence for multi core process, the FP-Growth method is 

adapted. 

 

Webdoc 

Webdoc dataset was donated by Claudio Lucchese, Salvatore 

Orlando, Raffaele Perego, and Fabrizio Silvestri [6] and was 

built from a spidered collection of web html documents. A 

huge real-life transactional dataset was made publicly 

available to the Data Mining community through the FIMI 

repository. The whole collection contains about 1.7 millions 

documents, mainly written in English, and its size is about 

5GB. It has 1,523,346 number of transactions and 52, 

676,657. 

 

Kosarak dataset 

The Kosarak dataset was provided to us by Ferenc Bodon[7] 

and contains  click-stream data of a hungarian on-line news 

portal. Kosarak has 990,002 transactions and 41,271 numbers 

of items. 

 

Trump dataset   

Trump dataset [8] contains 56 major speeches by Donald 

Trump by June 2015 – November 2016. 

 

Performance analysis in terms of execution time  of  

Apriori, Eclat and Fp-Growth. 

The performance in terms of execution time of three states of 

art methods such as Apriori , Eclat  and FP-growth  on  

experimental dataset is shown in the  table3. From the results, 

it is found that while FP-growth runs fastest on the sparse and 

dense dataset compared to other two methods. Hence for 

multi core process, the FP-Growth method is adapted. 

 

Table1 Performance analysis in terms of execution time  of  

Apriori, Eclat and Fp-Growth 

Dataset Apriori Eclat FPGrowth 

WebDocs 120056 88467 63294 

Kosarak 8944 6467 4324 
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 Figure1 Execution time for Webdoc with three algorithms 

 

 
Figure2 Execution time for Kosarak with three algorithms 

 

 
Figure3 Execution time for Kosarak with three algorithms 

 

When we apply the three algorithms Apriori, Eclat and FP 

Growth on the datasets Webdoc, Kosarak and Trump, From 

the above three figures  we come to know that FP Growth has 

high speed than other two. 

 

 
Figure4  Speedup of FP  growth algorithm compared  

with Apriori and  Eclat 

 

From the above figure we come to  know that, with WebDocs  

the execution speed of  FP Growth algorithm is 56762 unit 

times faster than Apriori and 25173 unit times faster than 

Eclat algorithms. In case of Kosarak datasets, FP growth 

isssss 4620 unit times faster than Apriori and 2143 unit times 

faster than Eclat. In the third case with Trump dataset, 409 

unit times faster than Apriori and 148 unit times faster than 

Eclat. 

 

PARALLEL TEXT MINING ON MULTICORES 

The parallel data mining algorithms to be executed on multi 

core processors are used various architecture. The parallel 

method needs unified interfaces among the processes.  For 

parallel execution additional functions are added to share data 

and models between the parallel threads. Besides such 

features have to obtain various parallel algorithm structures 

and implement various strategies of execution for different 

environment conditions. The described parallel method is 

illustrated through various algorithms Apriori, Eclat, ARM 

algorithms and FP-Growth algorithms. 

 

The parallel   implementation of FP-tree may show good 

speedups but sending the local results to master on distributed 

environment and merging the patterns count on master core 

are overhead which consumes a considerable time.A parallel 

formulation of the FP-Tree algorithm (E. H. Han et al., 

2000)on a distributed memory environment  consists of two 

main stages:  

 

1. Parallel construction of FP-trees for each available 

processor, and 2.parallel formulation of the FP-Growth 

sequential   mining method to mine   each FP-tree. 

 

2. Conditional FP-Trees (CFPT) are building recursively in 

parallel until all the frequent itemsets are generated. by 

proposing a master-worker based dynamic task scheduling 

technique to balance the workload at run time. 

 

The number of trees to be built depends on several parameters 

of the database, such as average length of the transaction, 

number of transactions in the database, number of frequent 
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items, and support threshold. We intend to improve the serial 

algorithm based on our findings and run our parallel  

algorithm  for  even  higher  number  of  processors  with  

larger  data  sets,  based  on  the resource availability on the 

machine environment. 

 

 PFPMLZW(a parallel  frequency pattern mining 

using LZW based algorithm) 

 

THE OVERVIEW OF PFPMLZW 

Various data mining algorithms like Apriori, ECLAT and  

FP-Growth are used to find interesting patterns from the data 

bases. Those algorithms can be applied on Transaction 

databases, streams, strings, spatial data and graphs. 

PFPMLZW implements a unified model for is proposed to 

discover  frequent patterns using LZW based  algorithm with 

message passing interface among  n cores in parallel manner. 

Synchronous communication has been occurring among the 

processors for updating the table entries. PFPMLZW perform 

its mining task in the following major stages that are 

presented in detail in the following sections. 

Preprocessing work on given text: To compact all data in 

memory the preprocessing work is done by stop words and 

stemming algorithms. 

 

Extract keywords and construct the initial keyword table: 
Using RAKE ( Rapid Automatic Keyword Extraction ) 

extract the keywords and construct the keyword table by 

assigning code for each keyword. 

Partition the given text and distribute it to n cores: By 

keeping load balance( is an even division of processing work 

between two or more computers and/or CPUs or other 

devices. 

Do the local computations: For finding new patterns and 

updating the table entries using LZW algorithm with message 

passing mechanism. 

Extract the frequent patterns from the tables: By setting 

minimum count value/ threshold value. 

 

THE DICTIONARY BASED /LZW ALGORITHM. 

LZW is invented by Abraham Lempel, Jacob Ziv & Terry 

Welch. It is also called as Dictionary based Coding. It   is a 

lossless compression algorithm used to compress the repeated 

patterns in the digital images. LZW compression start with 

simple dictionary called string table by assigning code to 

each string.   The LZW compression algorithm takes each 

input sequence of bits of a given length (for example, 12 bits) 

and creates an entry in a table (sometimes called a 

"dictionary" or "codebook") for that particular bit pattern, 

consisting of the pattern itself and a shorter code. As  input is 

read, any pattern that has been read before results in the 

substitution of the shorter code, effectively compressing the 

total amount of input to something smaller. The decoding 

program that uncompressed the file is able to build the table 

itself by using the algorithm as it processes the encoded 

input. 

 

FREQUENT PATTERN GENERATION ON SINGLE 

CORE USING LZW BASED ALGORITHM 

On single core system, new pattern will be formed by 

combining a string with neighboring string.  If a new pattern 

has been found and if the same pattern is already presented in 

the PC-table then increase the relevant frequent count by one 

otherwise put the new entry in the PC-table and assign a new 

code for it. The new code will be given by automatic 

increment of the event. The relevant sequential mining 

algorithm FPMLZWSC is given as follows. 

FPMLZWSC(input-text,minimum-count-value) 

// Input-text is the given text  

Step1:Get the input text and do the preprocessing work.  

Step2:Create the sting table and initial PC-Table in shared 

memory. 

Step3: Find the new pattern from the given text. 

3.1:Check the pattern with table entries weather the 

pattern is already     presented in the PC-Table or not. 

If not put the pattern in table entry        and assign a 

code for that. If presented just increment its frequent 

count  by 1. 

 3.2: repeat the step 3 until the entire text has been 

scanned. 

Step4:Arrange  the frequency count column in ascending  

order.  

Step5: Based on the minimum-count-value  extract the 

patterns. 

Step6:Exit. 

 

PROPOSED SOLUTION ON MULTI CORES 

We partitioned the datasets after preprocessing work and give 

it to the cores by keeping the load balanced among the cores. 

The architecture diagram of proposed model with message 

passing is given as in the following figure--. . 

 
Figure6 Frequent pattern generation model with message 

passing.  
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If a processor is found a new pattern then it  sends a message 

to other processors to check whether the pattern is presented 

in the Pattern Count table of other cores. If any one of the 

core’s tables has that pattern, then it automatically increment 

it and that core send a send Boolean message as 1 to the 

sending processor. The other processors which are not having 

that pattern in their tables will send Boolean messages as 0. 

The sender cores will check all the Boolean values if all are 0 

it comes to know that none of the core is having the pattern 

so it  create a new entry in its table and put a new code for it 

and set the frequent count as 1.   In this proposed scheme 

there is no much dependency on master core due to the intra 

message passing between worker cores.  The main advantage 

of this approach is a pattern occurred only once in a core. 

There is no redundancy of a pattern in cores. Hence it 

automatically saves the memory. Due to this concept there is 

no requirement for merging process carried out by the main 

core as in existing system. 

 

 PFPMLZW ALGORITHM 

The Parallel Frequent Pattern Mining using LZW algorithm is 

given below. 

 

PFPMLZW (input-text, minimum-count-value/Threshold) 

Step1: Load input -text data.  

Step2: Do the pre-processing work by using   Stop words and 

stemming  algorithms. 

Step3: Extract the Keywords using RAKE (Rapid Automatic 

Keyword Extraction) 

Step4: Assign Code for Each String and construct initial 

keyword table. 

Step5: Partitioning the given text and give it to cores, keeping 

the load balance. 

Step6: Each core will perform the local computation. 

6.1: Find the pattern from the given text. 

6.2: Check the pattern with table entries whether the pattern 

is already   Presented or not.   If not send a message 

with new pattern to other cores.    6.2.1. On each 

processor 

checks the pattern with PC-table entries that whether the 

pattern  is  already presented or not. 

If presented increment its relevant frequent count by 1 and 

send the updated message as Boolean value 1 

Else send message as 0 to the core which sent the                              

message.   

Step 6.3: Repeat the steps 6.1 and 6.2 until all patterns have 

 been  scanned. 

 Step7: By setting minimum count value extract the patterns 

from the tables of all the cores. 

Step8: Exit. 

 

IV. RESULT ANALYSIS 

 

The proposed multi core based frequent itemset mining 

algorithm is implemented with the help of Python 3.5 with 

Message Passing Interface.  We have run the proposed 

parallel algorithm with 2, 4 and 6  processors  and compared 

it  with the FP-tree sequential algorithm. Both parallel and 

sequential algorithms were executed and the frequent 

itemsets were generated for a minimum support threshold of 

0.1%. 

 

The parameters latency, Speedup and efficiency are measured 

with three datasets Webdoc, Kosarak and Trump by applying 

parallel and LZW based algorithm are given below for the 

reference  

 

LATENCY 

The Latency time comparison on three datasets between PMC 

and LZW based multicore algorithm is given below. By 

seeing the results, we come to know that, on 2 cores, the 

latency times of LZW based multicorealgorithm takes 114 

seconds , nearly half of Parallel multicore system’s latency 

250 seconds. PMC algorithm takes 136 more seconds delay. 

In case of 3 cores, PMC algorithm is taking 68 more seconds 

delay than LZW based multicore algorithm. With 4 cores 

PMC takes 66 seconds more latency. For 5 cores PMV takes 

82 seconds delay than proposed algorithm and with 6 cores 

PMC takes 45 seconds delay than LZW based multicore 

algorithm. More or less,  the latency difference is not too 

much differ among the algorithm even though the number of 

cores increased.  

 

Trump 

Table2: Latency of Parallel multi core vs LZW based 

algorithm on Trump. 

Cores PMC LZW based  

Multicore 

2 250 114 

3 164 96 

4 124 58 

5 129 47 

6 82 37 

 

 
Figure7 Latency  time comparison on Trump dataset between 

PMC and LZW based algorithm. 
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Kosarak 

As in the case of  Trump dataset Latency, the  results show 

that,  on 2 cores, the latency times of LZW based multicore 

algorithm takes 2938  seconds which is  nearly half of 

Parallel multicore system’s 5531 seconds. PMC algorithm 

takes 2593 more seconds delay. In case of 3 cores, PMC 

algorithm is taking1664 more seconds delay than LZW based 

multicore  algorithm. With 4 cores PMC takes 1395 seconds 

more latency. For 5 cores PMV takes 1422 seconds delay 

than proposed algorithm and with 6 cores PMC takes 857 

seconds delay than LZW based multicore algorithm. 

 

Table3: Latency of Parallel multi core vs LZW based 

algorithm on Kosarak. 

 

 
 

 

 
Figure8 Latency time comparison on  Kosarak dataset 

between PMC and LZW based algorithm 

 

Webdocs 

On Webdocs with 2 cores, the latency times of LZW based 

multicore algorithm is 41037 seconds are nearly half of 

Parallel multicore system’s latency 78808 seconds. PMC 

algorithm takes 37771 more seconds delay. In case of 3 cores, 

PMC algorithm is taking  21302 more seconds delay than 

LZW based multicore algorithm. With 4 cores PMC takes 

16120 seconds more latency. For 5 cores PMV takes 12891 

seconds delay than proposed algorithm and with 6 cores PMC 

takes 10753 seconds delay than LZW based multicore 

algorithm.  

Table4 Latency of Parallel multi core vs LZW based 

algorithm on Webdocs. 

 
 

 
Figure9  Latency  time comparison on Webdoc dataset 

between PMC and LZW based algorithm 

SpeedUp:    

 The following table shows the speedup of  PMC than single 

core and the speedup of LZW based algorithm with PMC. 

From the resultant dataset, the  speedup of PMC vs single 

cores on all three datasets are coming around 2.3 seconds and 

the speedup of LZW based multicore vs single core for all 

three types of datasets are nearly around 4.5 seconds. 

 

Table5 Speedup time of Parallel multi core vs Single core on 

three datasets. 

 
 

 



   International Journal of Computer Sciences and Engineering                                     Vol.7(2), Feb 2019, E-ISSN: 2347-2693 

  © 2019, IJCSE All Rights Reserved                                                                                                                                        666 

 
Figure10  The Speedup time comparison on three datasets 

between PMC and LZW based algorithm 

 

 

Efficiency: 
The efficiency of algorithms PMC vs single core and LZW 

based multicore vs  single cores is given in the following 

table. 

 

Table6 Efficiency  of Parallel multi core vs Single core on 

three datasets. 

Dataset
s 

PMC VS 
SingleCore 

LZW based  Multicore VS 
Singlecore 

Trump 0.43177 0.771182 

Kosarak 0.392093 0.734625 

Webdo
cs 

0.353659 0.783784 

 

 
Figure11 The Efficiency comparison on three datasets 

between PMC and LZW based algorithm 

 

Memory Usage: 

 The memory usage for execution of the algorithms single 

core, PMC and  LZW based multicore on three datasets 

Trump, Kosarak and Webdoc are given below. In case of 

Trump dataset, the single core takes 89308 KB, the   PMC 

algorithm  takes 63471 KB memory and LZW based 

multicore takes 41238 KB.  

 

For  Kosarak dataset Single core takes 103485 KB, the   PMC 

algorithm  takes 87369 KB memory and LZW based 

multicore takes 69361 KB. With Webdocs dataset the Single 

core takes 2169453 KB, the   PMC algorithm  takes 1387944 

KB memory and LZW based multicore takes 869427 KB. 

 

Table7  Memory usage  of Single core, Parallel multi core 

and LZW based Multicore  on three datasets. 

 
 

 
Figure12 Memory usage  of Single core, Parallel multi core 

and LZW based Multicore  on three datasets 

 

The above results with  2 to 6 cores on three datasets show 

that  when we move from single core to multicore  parallel 

implementation,  the performance is increased on various  

measures like speedup, latency, execution time, efficiency 

and memory usage. But when we applied the proposed 

algorithm the performance is higher than other cases. So we 

are making proof that the new algorithm is efficient one and 

it is simple for implementation on multicores with message 

passing mechanism. 
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V.   CONCLUSION 

 

Without the novel computational technique, it would be 

hardly possible to analyze the extremely diverse combination 

patterns. The parallel implementation of  frequent itemset  

mining algorithms are  applied on databases in single core 

and multicore environments. We are concentrating on three 

popular pattern mining algorithms Apriori, Eclat and FP- 

Growth and do analysis work as in step by step manner as 

follows (i) Apply the algorithms on  three types of datasets 

Webdoc, Kosarak and Trump separately  on single core and 

compare the speedups among them. ( ii) A parallel 

Implementations of   the algorithms with the same dataset is 

done and  analyze  the speedups of them. The next step is 

applying our proposed algorithm PFPMLZW on multicores, 

that is a parallel implementation LZW algorithm on multi 

core message passing environment is used to find the 

frequent items is explained and tested with three experimental 

datasets Webdoc, Kosarak and Trump on 6 processors 

environment. Our experiments showed speedups for almost 

all the cases. 

 

When we intend to improve the multi cores to distribute   in 

future, we can apply the proposed algorithm to distributed 

environment with large datasets. The processing is depends 

on the resource availability on the machine environment. 
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