

 © 2019, IJCSE All Rights Reserved 658

 International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-2, Feb 2019 E-ISSN: 2347-2693

Text Mining Using Frequent Pattern Analysis and Message Passing

M. Deeba
1*

, Mary Immaculate Sheela
2

1
Manonmaniam Sundaranar University, Trirunelveli, India

2
Department of Information Technologyy,Pentecost University College, Ghana

DOI: https://doi.org/10.26438/ijcse/v7i2.658667 | Available online at: www.ijcseonline.org

Accepted: 22/Feb/2019, Published: 28/Feb/2019

Abstract Text mining is a Computer Science technique to analyze text data. Text mining is text analysis, is the process of

deriving high quality information from text. Text mining is to convert text into data for suitable analysis. It allows us to

investigate relationship among patterns which would otherwise be extremely difficult. Various techniques are used to mining

the frequent patterns in the given text which are applicable to analyze the information in huge documents. The parallel

construction of FP-Trees and parallel mining on multi cores is a popular tree projection based mining algorithm. Once each

processor counts the frequency of each item using its local data partition, all worker processors send the local count to the

master processor which combines them and generate global count. The parallel implementation of FP-tree may show good

speedups but sending the local results to master on distributed environment and merging the patterns count on master core are

overhead which consumes a considerable time. This study aims at to analyze various frequent pattern mining techniques used

to extract information from texts especially on multi cores and going to adopt a new technique for finding frequent patterns,

which used the Dictionary based compression algorithm(LZW). The new technique is implemented with single processor as

so as with multi processor using message passing technique. The main objective of this research is enhancing the speed and

reduce the memory consumption required to extract the frequent patterns form the given textual data. The parallel

implementation of our proposed LZW based algorithm with three datasets Webdoc, Kosarak and Trump is compared with

parallel implementation of FP-Growth on single and multi core. The results shows good performance in speedup, Latency and

Efficiency in proposed LZW based algorithm.

Keywords Parallel FP-Growth, Frequent Keywords Mining, Multi core Systems

I. INTRODUCTION

Recent technological improvements have led to the

availability of new type of information that was previously

not available. The modern database includes both standard

structure of data and unstructured data comprising words,

images, and videos. New sources of text data such as text

messages, social media activity, web searches and blogs. The

tremendous availability of published texts, sophisticated

technologies and interest in extracting information from text

has led to replacing the human effort with automatic systems.

Now a day’s greater understanding of the text mining has led

government authorities and private sectors to use this

developing technology. The National Center for Text mining

(NaCTem) is the first public funded text mining center in the

world established by United Kingdom, operated by university

of Manchester. Text analyzing text data is an one of the main

element of Big data trends.

Text mining is to convert text into data for suitable analysis.

There is a need for computational Artificial intelligence

algorithms and statistical techniques to text documents.

Various text mining techniques like Information Extraction,

Information Retrieval, categorization and Clustering are used

to extract useful information from Text data. The result of

text mining could make text data as informative one. It allows

us to investigate relationship among patterns which would

otherwise be extremely difficult. With text mining, the text

can be categorized and clustered which producing results

such as word frequency count and predictions analysis.

An important subfield of data mining that is called pattern

mining. Pattern mining consists of using data mining

algorithms to discover interesting, unexpected and useful

patterns in databases. Pattern mining algorithms can be

applied on various types of data such as transaction

databases, sequence databases, streams, strings, spatial data,

and graphs. A wide variety of algorithms will be covered

starting from Apriori. Many algorithms such as Eclat,

TreeProjection, and FP-growth.

What is an interesting pattern? There are several definitions.

For example, some researchers define an interesting pattern

as a pattern that appears frequently in a database. Other

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 659

researchers want to discover rare patterns, patterns with a

high confidence, the top patterns, etc. The problem of

frequent pattern mining has been widely studied in the

literature because of its numerous applications to a variety of

data mining problems such as clustering and classification. In

addition, frequent pattern mining also has numerous

applications in diverse domains such as spatiotemporal data,

software bug detection, and biological data. The algorithmic

aspects of frequent pattern mining have been explored

widely.

Applying above pattern mining algorithms on multi cores

using shared memory are now a day’s ubiquitous. The

parallel approaches to the frequent item sets using FP-Tree

algorithm is a fast and popular tree projection based mining

algorithm. Building several local FP- trees on multi cores

parallel until all the frequent patterns are generated. The

parallel algorithms with good workload balance provide

higher speedups when are compared to sequential algorithm.

The parallel implementation of FP-Trees and parallel mining

on multi cores is a popular tree projection based mining

algorithm. Once each processor counts the frequency of each

item using its local data partition, all worker processors send

the local count to the master processor which combines them

and generate global count after the master processor removes

the item with support count less than minimum support

threshold. Once a complete frequent item set is constructed, it

will broadcast to all the processors to the group. The parallel

implementation of FP-tree may show good speedups but

sending the local results to master on distributed environment

and merging the patterns count on master core are overhead

which consumes a considerable time.

One of the basic methods of parallel computing is the use of

message passing. It is a transfer of data between instances of

parallel program running on multiple processors in a parallel

computing architecture. Parallel computers have two basic

architectures Distributed memory and Shared memory.

We need algorithms that do not require multiple scans of the

data base and leave small foot print in main memory at a

given time. There are three factors initiate this research

undertaken.

First one is the construction of FP-Tree on FP-Growth

algorithm may not fit in memory also expensive to build. So,

there is a need to minimize the consumption of memory. In

FP-Growth algorithm, the construction of FP tree for each

transaction will be in need of adding new nodes with existing

ones of the tree. It is somewhat difficult to understand by the

beginners. If transaction table has too many transaction ids

then the tree will be large. So the second aim is to give an

easy algorithm which is easily understood by the users. While

we compare the speed of the algorithms Apriori, Eclat and

FP-Growth, the FP-Growth gives high speed ups than the

other two. But when Fp-Growth is applied with huge

database speed is slow. So, the third aim is to improve the

speed.

The main objective of this paper is to improve the

speed of mining work to extract frequent patterns from a

given text mining by the parallel mode of work allotment on

multi processors which are coordinating with each other by

passing the messages among them to update the frequent

pattern tables within them.

The paper is organized as follows: section1 is Introduction;

section 2 is the literature survey where various related works

of the authors are discussed in detail. section 3 describes

about the Methodologies used. section4 is discussed about

Results Analysis and section5 is the Conclusion of the

discussions.

II. LITERATURE SURVEY

A manual literature search was conducted to identify the

literature available on various facets of the topic and to select

relevant resources for the review. The search was performed

using various Google Scholar search engine and various

electronic databases also utilized. Keywords used included

frequent pattern mining (FPM), Parallel pattern mining

techniques, message passing multiprocessor systems etc. The

search was limited to resource in the English language and

was conducted over the period 1994 to2018. The researcher

also referred list of relevant articles and particular resources

were focused through on line.

This literature review begins with an overview of frequent

pattern mining techniques which are already existed to assist

the text mining process. The overview is followed by a

discussion of the parallel FPM conceptual framework of this

study. The factors influencing on parallel FPM are discussed

within the theoretical framework and the various algorithms

used for parallel FPM are also presented.

Frequent pattern mining on Text mining is an important tool

to establish the incidence of patterns, which are used to

extract frequent information from the text. Pattern mining is

an important subfield of data mining. Various pattern mining

algorithms can be applied on various types of data such as

transaction databases, sequence databases, strings, spatial

data, streams and graphs (CC Aggarwal, 2007). A range of

widely used algorithms for finding frequent pattern on large

transactional database (Sharmila Nasreen et.al. 2014).

Apriori algorithm, Frequent Pattern Growth algorithm, Rapid

Association Rule Mining (RARM), ECLAT algorithm and

Associated Sensor Pattern Mining of Data Streams (ASPMS)

Frequent pattern algorithms. The study focused on strength

and weakness on each algorithm. The techniques used by

Apriori are Breadth first search, RARM is Depth first search,

FP-Growth used Divide and conquers. Regarding the data

base scan Apriori Scans the database each time when the

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 660

candidate key is generated. RARM scans few times to

construct SOTriel tree. Apriori takes considerable execution

time. The other algorithms execution time is less than

Apriori. The major drawback of Apriori algorithm has to

generate too many candidate itemset. ECLAT requires virtual

memory to perform transformation. The construction of FP

Tree in FP growth algorithm is expensive to build and it

consumes more memory. The entire above frequent pattern

algorithms can be applied for text mining.

Frequent Keyword Mining (FKM) is a useful tool for

discovering frequently occurring keywords in data [1]. Many

algorithms like Apriori, RARM and FP Growth have been

developed to speed up mining performance on single core

systems. When the data set size is huge it is good to

parallelize FP-Growth algorithm on multi core machines.

Partitioning the large database into number of cores and

utilize the combined strength of all the cores to achieve

maximum performance.

One of the major problems in frequent itemset mining is the

explosion of the number of results which is directly effecting

on the execution time of itemset mining algorithms[2]. To

address this problem, closed itemsets have been proposed,

which provides concise lossless representations of the

original collection of frequent itemsets.

Associated Rule mining (ARM) is one of the fundamental

tasks in data mining. It’s first application for the analysis of

sales basket data which was introduced by Agarwal et al[3].

The important problems in data mining are discovering

association rules from databases of transactions where each

transaction consists of a set of items[4]. The most time

consuming operation in this discovery process is the

computation of the frequency of the occurrences of

interesting subset of items (called candidates) in the database

of transactions. Mining frequent patterns in transaction

databases, time series databases, and many other kinds of

databases has been studied popularly in data mining research

[5]. Most of the previous studies adopt an Apriori-like

candidate set generation-and-test approach. However,

candidate set generation is still costly, especially when there

exist long pattern.

Efficient utilization of shared memory MIMD parallelism is

essential to improve the overall performance(L. Liu et al.,

2007) as the large data movement and communication

requirements of parallel association rule mining can be

performed seamlessly exploiting the underlying shared

memory [6].

FP-growth is usually a selection for large-scale mining

applications due to its performance merits. In addition, the

divide-and-conquer approach of FP-growth naturally lends

itself to parallelism. Several parallel methods inspired by FP-

growth have been proposed for shared memory multi-core

systems. In the traditional FP-growth-based parallel

approach, parallel processes cooperatively build a shared

global FP-tree resulting in extensive use of costly

synchronization locks to access each node of the tree[7]. A

different approach called Tree Projection partitions the FP-

tree into subsections with small portions shared among

processes. Only access to the small shared sections would

require locks for synchronization [8]. Although this approach

reduces the synchronization cost considerably, it adds the

overhead of extra partitioning of the workload and is harder

to load balance.

Many of the methods for ARM have shown unstable

performance for different database types and under utilize the

benefits of multicore shared memory machines[9]. The

proposed method, named ShaFEM, combines two mining

strategies and applies the most appropriate one to each data

subset of the database to efficiently adapt to the data

characteristics and run fast on both sparse and dense

databases. The ShaFEM[10] uses a new data structure named

XFP-tree that is shared among processes to compact data in

memory.

The characteristics of these data structures and the behaviors

of their mining methods are quite different and will result D

is scanned to specify all frequent items (or 1-itemsets) in D

based on the minsup value. After this step, only data of

frequent items are used to determine the frequent itemsets as

well as to generate the association rules. This considerably

reduces the memory usage and computation by avoiding a

large amount of infrequent data from in different performance

for a given database[11]. For example, algorithms like

Apriori [12], FP-growth[13] and those making use of FP-

array data structure[14] exploit horizontal format of data and

perform efficiently on sparse databases (e.g. web document

data or retail data) while Eclat [15] present data in a vertical

format and run faster on the dense ones (e.g. biological

sequence data). These mining methods perform unstably on

differentdata types. Furthermore, the characteristics of data

subsets D used to mine (k +1)-itemsets can change from very

sparse to very dense as mining proceeds. Hence, applying a

suitable mining strategy for each D is essential to improve the

performance of ARM. It leads to the introduction of our

parallel mining approach employing two mining strategies

based on the characteristics of D. For large-scale

transactional databases, apply parallel computing to speed up

the mining.

III. METHODOLOGY

FREQUENT ITEMSET GENERATION

Frequent items play an essential role in many Data Mining

tasks that try to extract interesting patterns from databases.

The association rule mining is one of the most popular

problems of all these. The most basic tasks in Data Mining is

identification of sets of items, products, symptoms and

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 661

characteristics, which often occur together in the given

database. The motivation for searching frequent sets came

from the need to analyze the supermarket transaction data,

that is, to analyze the customer behavior in terms of the

purchased products. Frequent sets of items describe how

often items are purchased together. Text mining is a

technique that is used to extract useful information from large

amount of data sets. Data mining rules like frequent pattern

and association rule that is important for finding frequent

patterns. The apriori based and tree structure-based

algorithms are used in frequent pattern mining.. The tree

structure-based algorithm is FP-Growth.

Apriori algorithms Frequent itemset generation:

Apriori is the first algorithm for finding frequent items.

Apriori algorithm was invented by Rakesh Agarwal and

Ramakrishnan Srikant[16]. It is a well known algorithm in

data mining. It was originally applied to market basket

transactions. Frequent itemsets generation of the Apriori

algorithm is using a general transaction database. Each row in

the table represents a transaction, which contains unique

transaction identification number (TID) along with items. But

it takes more time for finding the frequent item sets. It has to

scan the database again and again which is consumes lot of

time. Apriori uses a “bottom up” approach, where frequent

subsets are extended one item at a time

Frequent itemset generation with Eclat algorithm:
Eclat (Equivalent Class Clustering and bottom up Lattice

Traversal) algorithm is a data mining algorithm used to find

frequent items from large amount of database. The limitations

of Apriori algorithm is reduced by using vertical dataset

which reduces the access time. Eclat algorithm finds the

elements from bottom like depth first search. It is a simple

algorithm not using horizontal database. It counts the support

but not calculate the confidence. Both Apriori and FP-

Growth use horizontal data format.

Frequent itemset mining with FP-Growth algorithm:
 FP-Growth algorithm has an improvement over above two

algorithms for finding frequency itemset in a database

without candidate key generation. It was proposed by Han. It

is fast and consumes less memory than Apriori. It constructs

a special internal structure called FP-tree. It is a two step

approach

Step1. Build a data structure called FP-Tree.

Step2: Extract the frequent items from FP-Tree.

FP-Tree construction has two passes. On pass1 It scan and

find the support of each item then discard the infrequent

items after that it arranged the frequent items in descending

order based on the support.

On pass2 FP-Growth reads one transaction at a time maps it

with path which can overlap when transactions share items.

Pointers are used between nodes.

Experimental datasets

The performance in terms of execution time of three states of

art methods such as Apriori , Eclat and FP-growth on

experimental dataset is shown in the table3.10. From the

results, it is found that while FP-growth runs fastest on the

sparse and dense dataset compared to other two methods.

Hence for multi core process, the FP-Growth method is

adapted.

Webdoc

Webdoc dataset was donated by Claudio Lucchese, Salvatore

Orlando, Raffaele Perego, and Fabrizio Silvestri [6] and was

built from a spidered collection of web html documents. A

huge real-life transactional dataset was made publicly

available to the Data Mining community through the FIMI

repository. The whole collection contains about 1.7 millions

documents, mainly written in English, and its size is about

5GB. It has 1,523,346 number of transactions and 52,

676,657.

Kosarak dataset

The Kosarak dataset was provided to us by Ferenc Bodon[7]

and contains click-stream data of a hungarian on-line news

portal. Kosarak has 990,002 transactions and 41,271 numbers

of items.

Trump dataset

Trump dataset [8] contains 56 major speeches by Donald

Trump by June 2015 – November 2016.

Performance analysis in terms of execution time of

Apriori, Eclat and Fp-Growth.

The performance in terms of execution time of three states of

art methods such as Apriori , Eclat and FP-growth on

experimental dataset is shown in the table3. From the results,

it is found that while FP-growth runs fastest on the sparse and

dense dataset compared to other two methods. Hence for

multi core process, the FP-Growth method is adapted.

Table1 Performance analysis in terms of execution time of

Apriori, Eclat and Fp-Growth

Dataset Apriori Eclat FPGrowth

WebDocs 120056 88467 63294

Kosarak 8944 6467 4324

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 662

 Figure1 Execution time for Webdoc with three algorithms

Figure2 Execution time for Kosarak with three algorithms

Figure3 Execution time for Kosarak with three algorithms

When we apply the three algorithms Apriori, Eclat and FP

Growth on the datasets Webdoc, Kosarak and Trump, From

the above three figures we come to know that FP Growth has

high speed than other two.

Figure4 Speedup of FP growth algorithm compared

with Apriori and Eclat

From the above figure we come to know that, with WebDocs

the execution speed of FP Growth algorithm is 56762 unit

times faster than Apriori and 25173 unit times faster than

Eclat algorithms. In case of Kosarak datasets, FP growth

isssss 4620 unit times faster than Apriori and 2143 unit times

faster than Eclat. In the third case with Trump dataset, 409

unit times faster than Apriori and 148 unit times faster than

Eclat.

PARALLEL TEXT MINING ON MULTICORES

The parallel data mining algorithms to be executed on multi

core processors are used various architecture. The parallel

method needs unified interfaces among the processes. For

parallel execution additional functions are added to share data

and models between the parallel threads. Besides such

features have to obtain various parallel algorithm structures

and implement various strategies of execution for different

environment conditions. The described parallel method is

illustrated through various algorithms Apriori, Eclat, ARM

algorithms and FP-Growth algorithms.

The parallel implementation of FP-tree may show good

speedups but sending the local results to master on distributed

environment and merging the patterns count on master core

are overhead which consumes a considerable time.A parallel

formulation of the FP-Tree algorithm (E. H. Han et al.,

2000)on a distributed memory environment consists of two

main stages:

1. Parallel construction of FP-trees for each available

processor, and 2.parallel formulation of the FP-Growth

sequential mining method to mine each FP-tree.

2. Conditional FP-Trees (CFPT) are building recursively in

parallel until all the frequent itemsets are generated. by

proposing a master-worker based dynamic task scheduling

technique to balance the workload at run time.

The number of trees to be built depends on several parameters

of the database, such as average length of the transaction,

number of transactions in the database, number of frequent

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 663

items, and support threshold. We intend to improve the serial

algorithm based on our findings and run our parallel

algorithm for even higher number of processors with

larger data sets, based on the resource availability on the

machine environment.

 PFPMLZW(a parallel frequency pattern mining

using LZW based algorithm)

THE OVERVIEW OF PFPMLZW

Various data mining algorithms like Apriori, ECLAT and

FP-Growth are used to find interesting patterns from the data

bases. Those algorithms can be applied on Transaction

databases, streams, strings, spatial data and graphs.

PFPMLZW implements a unified model for is proposed to

discover frequent patterns using LZW based algorithm with

message passing interface among n cores in parallel manner.

Synchronous communication has been occurring among the

processors for updating the table entries. PFPMLZW perform

its mining task in the following major stages that are

presented in detail in the following sections.

Preprocessing work on given text: To compact all data in

memory the preprocessing work is done by stop words and

stemming algorithms.

Extract keywords and construct the initial keyword table:
Using RAKE (Rapid Automatic Keyword Extraction)

extract the keywords and construct the keyword table by

assigning code for each keyword.

Partition the given text and distribute it to n cores: By

keeping load balance(is an even division of processing work

between two or more computers and/or CPUs or other

devices.

Do the local computations: For finding new patterns and

updating the table entries using LZW algorithm with message

passing mechanism.

Extract the frequent patterns from the tables: By setting

minimum count value/ threshold value.

THE DICTIONARY BASED /LZW ALGORITHM.

LZW is invented by Abraham Lempel, Jacob Ziv & Terry

Welch. It is also called as Dictionary based Coding. It is a

lossless compression algorithm used to compress the repeated

patterns in the digital images. LZW compression start with

simple dictionary called string table by assigning code to

each string. The LZW compression algorithm takes each

input sequence of bits of a given length (for example, 12 bits)

and creates an entry in a table (sometimes called a

"dictionary" or "codebook") for that particular bit pattern,

consisting of the pattern itself and a shorter code. As input is

read, any pattern that has been read before results in the

substitution of the shorter code, effectively compressing the

total amount of input to something smaller. The decoding

program that uncompressed the file is able to build the table

itself by using the algorithm as it processes the encoded

input.

FREQUENT PATTERN GENERATION ON SINGLE

CORE USING LZW BASED ALGORITHM

On single core system, new pattern will be formed by

combining a string with neighboring string. If a new pattern

has been found and if the same pattern is already presented in

the PC-table then increase the relevant frequent count by one

otherwise put the new entry in the PC-table and assign a new

code for it. The new code will be given by automatic

increment of the event. The relevant sequential mining

algorithm FPMLZWSC is given as follows.

FPMLZWSC(input-text,minimum-count-value)

// Input-text is the given text

Step1:Get the input text and do the preprocessing work.

Step2:Create the sting table and initial PC-Table in shared

memory.

Step3: Find the new pattern from the given text.

3.1:Check the pattern with table entries weather the

pattern is already presented in the PC-Table or not.

If not put the pattern in table entry and assign a

code for that. If presented just increment its frequent

count by 1.

 3.2: repeat the step 3 until the entire text has been

scanned.

Step4:Arrange the frequency count column in ascending

order.

Step5: Based on the minimum-count-value extract the

patterns.

Step6:Exit.

PROPOSED SOLUTION ON MULTI CORES

We partitioned the datasets after preprocessing work and give

it to the cores by keeping the load balanced among the cores.

The architecture diagram of proposed model with message

passing is given as in the following figure--. .

Figure6 Frequent pattern generation model with message

passing.

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 664

If a processor is found a new pattern then it sends a message

to other processors to check whether the pattern is presented

in the Pattern Count table of other cores. If any one of the

core’s tables has that pattern, then it automatically increment

it and that core send a send Boolean message as 1 to the

sending processor. The other processors which are not having

that pattern in their tables will send Boolean messages as 0.

The sender cores will check all the Boolean values if all are 0

it comes to know that none of the core is having the pattern

so it create a new entry in its table and put a new code for it

and set the frequent count as 1. In this proposed scheme

there is no much dependency on master core due to the intra

message passing between worker cores. The main advantage

of this approach is a pattern occurred only once in a core.

There is no redundancy of a pattern in cores. Hence it

automatically saves the memory. Due to this concept there is

no requirement for merging process carried out by the main

core as in existing system.

 PFPMLZW ALGORITHM

The Parallel Frequent Pattern Mining using LZW algorithm is

given below.

PFPMLZW (input-text, minimum-count-value/Threshold)

Step1: Load input -text data.

Step2: Do the pre-processing work by using Stop words and

stemming algorithms.

Step3: Extract the Keywords using RAKE (Rapid Automatic

Keyword Extraction)

Step4: Assign Code for Each String and construct initial

keyword table.

Step5: Partitioning the given text and give it to cores, keeping

the load balance.

Step6: Each core will perform the local computation.

6.1: Find the pattern from the given text.

6.2: Check the pattern with table entries whether the pattern

is already Presented or not. If not send a message

with new pattern to other cores. 6.2.1. On each

processor

checks the pattern with PC-table entries that whether the

pattern is already presented or not.

If presented increment its relevant frequent count by 1 and

send the updated message as Boolean value 1

Else send message as 0 to the core which sent the

message.

Step 6.3: Repeat the steps 6.1 and 6.2 until all patterns have

 been scanned.

 Step7: By setting minimum count value extract the patterns

from the tables of all the cores.

Step8: Exit.

IV. RESULT ANALYSIS

The proposed multi core based frequent itemset mining

algorithm is implemented with the help of Python 3.5 with

Message Passing Interface. We have run the proposed

parallel algorithm with 2, 4 and 6 processors and compared

it with the FP-tree sequential algorithm. Both parallel and

sequential algorithms were executed and the frequent

itemsets were generated for a minimum support threshold of

0.1%.

The parameters latency, Speedup and efficiency are measured

with three datasets Webdoc, Kosarak and Trump by applying

parallel and LZW based algorithm are given below for the

reference

LATENCY

The Latency time comparison on three datasets between PMC

and LZW based multicore algorithm is given below. By

seeing the results, we come to know that, on 2 cores, the

latency times of LZW based multicorealgorithm takes 114

seconds , nearly half of Parallel multicore system’s latency

250 seconds. PMC algorithm takes 136 more seconds delay.

In case of 3 cores, PMC algorithm is taking 68 more seconds

delay than LZW based multicore algorithm. With 4 cores

PMC takes 66 seconds more latency. For 5 cores PMV takes

82 seconds delay than proposed algorithm and with 6 cores

PMC takes 45 seconds delay than LZW based multicore

algorithm. More or less, the latency difference is not too

much differ among the algorithm even though the number of

cores increased.

Trump

Table2: Latency of Parallel multi core vs LZW based

algorithm on Trump.

Cores PMC LZW based

Multicore

2 250 114

3 164 96

4 124 58

5 129 47

6 82 37

Figure7 Latency time comparison on Trump dataset between

PMC and LZW based algorithm.

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 665

Kosarak

As in the case of Trump dataset Latency, the results show

that, on 2 cores, the latency times of LZW based multicore

algorithm takes 2938 seconds which is nearly half of

Parallel multicore system’s 5531 seconds. PMC algorithm

takes 2593 more seconds delay. In case of 3 cores, PMC

algorithm is taking1664 more seconds delay than LZW based

multicore algorithm. With 4 cores PMC takes 1395 seconds

more latency. For 5 cores PMV takes 1422 seconds delay

than proposed algorithm and with 6 cores PMC takes 857

seconds delay than LZW based multicore algorithm.

Table3: Latency of Parallel multi core vs LZW based

algorithm on Kosarak.

Figure8 Latency time comparison on Kosarak dataset

between PMC and LZW based algorithm

Webdocs

On Webdocs with 2 cores, the latency times of LZW based

multicore algorithm is 41037 seconds are nearly half of

Parallel multicore system’s latency 78808 seconds. PMC

algorithm takes 37771 more seconds delay. In case of 3 cores,

PMC algorithm is taking 21302 more seconds delay than

LZW based multicore algorithm. With 4 cores PMC takes

16120 seconds more latency. For 5 cores PMV takes 12891

seconds delay than proposed algorithm and with 6 cores PMC

takes 10753 seconds delay than LZW based multicore

algorithm.

Table4 Latency of Parallel multi core vs LZW based

algorithm on Webdocs.

Figure9 Latency time comparison on Webdoc dataset

between PMC and LZW based algorithm

SpeedUp:

 The following table shows the speedup of PMC than single

core and the speedup of LZW based algorithm with PMC.

From the resultant dataset, the speedup of PMC vs single

cores on all three datasets are coming around 2.3 seconds and

the speedup of LZW based multicore vs single core for all

three types of datasets are nearly around 4.5 seconds.

Table5 Speedup time of Parallel multi core vs Single core on

three datasets.

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 666

Figure10 The Speedup time comparison on three datasets

between PMC and LZW based algorithm

Efficiency:
The efficiency of algorithms PMC vs single core and LZW

based multicore vs single cores is given in the following

table.

Table6 Efficiency of Parallel multi core vs Single core on

three datasets.

Dataset
s

PMC VS
SingleCore

LZW based Multicore VS
Singlecore

Trump 0.43177 0.771182

Kosarak 0.392093 0.734625

Webdo
cs

0.353659 0.783784

Figure11 The Efficiency comparison on three datasets

between PMC and LZW based algorithm

Memory Usage:

 The memory usage for execution of the algorithms single

core, PMC and LZW based multicore on three datasets

Trump, Kosarak and Webdoc are given below. In case of

Trump dataset, the single core takes 89308 KB, the PMC

algorithm takes 63471 KB memory and LZW based

multicore takes 41238 KB.

For Kosarak dataset Single core takes 103485 KB, the PMC

algorithm takes 87369 KB memory and LZW based

multicore takes 69361 KB. With Webdocs dataset the Single

core takes 2169453 KB, the PMC algorithm takes 1387944

KB memory and LZW based multicore takes 869427 KB.

Table7 Memory usage of Single core, Parallel multi core

and LZW based Multicore on three datasets.

Figure12 Memory usage of Single core, Parallel multi core

and LZW based Multicore on three datasets

The above results with 2 to 6 cores on three datasets show

that when we move from single core to multicore parallel

implementation, the performance is increased on various

measures like speedup, latency, execution time, efficiency

and memory usage. But when we applied the proposed

algorithm the performance is higher than other cases. So we

are making proof that the new algorithm is efficient one and

it is simple for implementation on multicores with message

passing mechanism.

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 667

V. CONCLUSION

Without the novel computational technique, it would be

hardly possible to analyze the extremely diverse combination

patterns. The parallel implementation of frequent itemset

mining algorithms are applied on databases in single core

and multicore environments. We are concentrating on three

popular pattern mining algorithms Apriori, Eclat and FP-

Growth and do analysis work as in step by step manner as

follows (i) Apply the algorithms on three types of datasets

Webdoc, Kosarak and Trump separately on single core and

compare the speedups among them. (ii) A parallel

Implementations of the algorithms with the same dataset is

done and analyze the speedups of them. The next step is

applying our proposed algorithm PFPMLZW on multicores,

that is a parallel implementation LZW algorithm on multi

core message passing environment is used to find the

frequent items is explained and tested with three experimental

datasets Webdoc, Kosarak and Trump on 6 processors

environment. Our experiments showed speedups for almost

all the cases.

When we intend to improve the multi cores to distribute in

future, we can apply the proposed algorithm to distributed

environment with large datasets. The processing is depends

on the resource availability on the machine environment.

REFERENCES

[1] Krishna Gadia & Kiran Bhowmick, ‘Parallel text mining in multi

core systems using FP-Tree algorithm’, ScienceDirect Procedia

Computer Science 45(2015)111-117, 2015

[2] S.K. Tanbeer, C.F. Ahmed, B.S. Jeong, ’Parallel and distributed

frequent pattern mining in large databases’, in: Proceeding of the

11th IEEE International Conference on High Performance

Computing and Communications, pp. 407–414, 2009

[3] R. Agrawal, R. Srikant, ’ Fast algorithms for mining association

rules’, in: Proceedings of the 20th International Conference on Very

Large Databases, , pp. 487–499, 1994.

[4] E. H. Han, G. Karypis, & V. Kumar.’ Scalable parallel data mining

for association rules’,IEEE Transactions on Knowledge and

Data Engineering, Vol. 12, No. 3,2000

[5] J. Han, J. Pei, and Y.Yin. Mining Frequent Patterns without

Candidate Generation. In ACM SIGMOD, 2000.

[6] R. Rabenseifner, G. Hager & G. Jost,2009,’ Hybrid MPI/OpenMP

parallel programming on clusters of multi-core SMP nodes’, in:

Proceeding of the 17
th
 Euromicro International Conference on

Parallel, Distributed and Network-based Processing (Feb. 2009), pp.

427–436.

[7] R. Garg & P.K. Mishra,2009,’Some observations of sequential,

parallel and distributed association rule mining algorithms’, In:

IEEE Proceeding of the International Conference on Computer and

Automation Engineering (March 2009), pp. 336–342.

[8] D. Chen, C. Lai, W. Hu, W. Chen, Y. Zhang & W. Zheng, 2006,’

Tree partition based parallel frequent pattern mining on shared

memory systems’, in: Proceeding of the 20th International

Conference on Parallel and Distributed Processing, pp. 313–320.27.

[9] Lan Vu & Gita Alaghband, 2014, ‘Novel parallel method for

association rule mining on multi-core shared memory systems’,

ELSEVIER, Parallel computing 40(2014)768-785.

[10] Vu, G. Alaghband, 2012.’ Mining frequent patterns based on data

characteristics’, in: Proceedings of the International Conference on

Information and Knowledge Engineering, pp. 369–375.20.

[11] CC Aggarwal, 2007, ‘Data streams, models and algorithms’,

Springer Science + Business media, books.google.com

[12] Krishna Gadia & Kiran Bhowmick, 2015, ‘Parallel text mining in

multi core systems using FP-Tree algorithm’, ScienceDirect

Procedia Computer Science 45(2015)111-117.

[13] J.S.Park, M.S.Chen & P.Yu,1995,’ An effective Hash based

algorithm for mining association rules’, in Proc: ACM SIGMOD

international conference on management of Data, Vol24, pp. 175-

186.

[14] H.Mannila, H.Tojvonen & A.I. Verkamo, 1997,’Discovery of

frequent episodes in event sequences’, Data Min. Knowl. Discovery

1(3)259-289.

