
 © 2020, IJCSE All Rights Reserved 66

 International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol. 8, Issue.12, December 2020 E-ISSN: 2347-2693

Improve the accuracy and time complexity of code smell detection using

SVM and DECISION-TREE with MULTI-LABEL CLASSIFACTION

Manpreet Kaur

1*
, Deepinder Kaur

2

DOI: https://doi.org/10.26438/ijcse/v8i12.6669 | Available online at: www.ijcseonline.org

Received: 04/Dec/2020, Accepted: 11/Dec/2020, Published: 31/Dec/2020

Abstract: Code smell refers to an anomaly in the source code that shows violation of basic design principles such as

abstraction, hierarchy, encapsulation, modularity. In this research we are using SVM (support vector Machine) and

decision Tree for code smell detection. In this research we improving the accuracy and time complexity of error in code

with the help of Multi-Label classification.

Keywords: CODE SMELLS, VECTOR MACHINE

I. INTRODUCTION

Code smell refers to an anomaly in the source code that

shows violation of basic design principles such as

abstraction, hierarchy, encapsulation, modularity etc. in

other words we can say Code smells refer to any symptom

in the source code of a program that possibly indicates a

deeper problem, hindering software maintenance and

evolution. Detection of code smells is challenging for

developers and their informal definition leads to the

implementation of multiple detection techniques and tools.

Developers are typically trained to look out for logical

errors that have been accidentally introduced to their code.

Such errors will range from forgotten edge cases that have

not been handle to logical bugs that cause entire systems to

crash. Code Smells are signals that your code should be re-

factored in order to improve extendibility, readability, and

supportability.

1.1 TYPES OF CODE SMELLS:

Some common code smells are found in project codes.

1. Bloaters

Bloaters are code, methods and classes that have increased

to such proportions that they are hard to work with.

Usually these smells do not crop up right away, rather they

accumulate over time as the program evolves. For

example: Long Method, Large Class, Primitive Obsession,

Long Parameter List, Data Clumps.

(i) Long Method: The majority of a programmer’s

time is spent reading code rather than writing code. Apart

from the difficulty of having to keep a lot of complex logic

in mind whilst reading a long method, it is usually a sign

that the method has too many responsibilities. Long

methods make code hard to maintain and debug. If it is not

possible to view the whole method on your smart phone

screen, consider breaking it up into several smaller

methods, each doing one precise thing.

(ii) DataClumps: Where multiple method calls take

the same set of parameters, it may be a sign that those

parameters are related. To keep the group of parameters

together, it can be useful to combine them together in a

class. This can help aid organization of code.

2. Object Oriented Abusers:
All these smells are incomplete or incorrect application of

object-oriented programming principles. For example,

Switch Statements, Temporary Field, Refused Bequest,

Alternative Classes with Different Interfaces.

3. Change-Preventers
These smells mean that if you need to change something in

one place in your code, you have to make many changes in

other places too. Program development becomes much

more complicated and expensive as a result. For example:

Divergent Change, Shotgun Surgery, Parallel Inheritance

Hierarchies:

(i) Duplicate-Code:
When developer fixes a bug, but same symptoms are faced

again later on, this can be the result of code duplication,

and a bug being fixed in one occurrence of the imperfect

code but not in the duplicated versions. This poses an

overhead in terms of maintenance. When developers are

not aware of the duplication, they only know to fix the

occurrence they have come across. Take care of the

repeated code blocks and extract them out into a single

place – don’t repeat yourself.

(ii) Inheritance-method:

If a class inherits from a base class but doesn’t use any of

the inherited fields or methods, developers should ask

themselves if inheritance really is the right model. Signs of

this code smell may be that the inherited methods go

unused, or are over ridden with empty method parts.

Inheritance should be used when a class wants to reuse the

code in its super class. If the classes diverge and the

subclass no longer needs that functionality, the hierarchy

should be broken and delegation considered instead. And

to keep some inheritance, remove the unused fields and

methods from the subclass and create a new layer that the

objects can inherit from.

https://apiumhub.com/tech-blog-barcelona/code-refactoring-techniques/
https://apiumhub.com/tech-blog-barcelona/code-refactoring-techniques/

 International Journal of Computer Sciences and Engineering Vol.8(12), Dec 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 67

II. MACHINE LEARNING

2.1 SUPPORT VECTOR MACHINE:

A support vector machine (SVM) is machine-learning

algorithm that analyzes data for classification and

regression analysis. SVM is a supervised learning method

that looks at data and sorts it into one of two categories.

An SVM outputs a map of the sorted data with the margins

between the two as far apart as possible. SVMs used in

text categorization, image classification, handwriting

recognition and in the sciences.

Figure 1.3 SVM A support vector machine is known as a support

vector network (SVN).

2.2 DECISION TREE:

Decision Tree learning algorithm generates decision trees

from the training data to solve classification and regression

problem. Decision Tree Algorithm uses some steps:

1. Start with a training data set which we’ll call S. It

should have attributes and classification.

2. Determine the best attribute in the dataset. (We will go

over the definition of best attribute)

3. Split S into subset that contains the possible values for

the best attribute.

4. Make decision tree node that contains the best attribute.

5. Recursively generate new decision trees by using the

subset of data created from step 3 until a stage reached

where you cannot classify the data further. Represent the

class as leaf node.

III. REVIEW OF LITERATURE

There are we will discuss the research of some researchers

that worked on code smell and try to detect the code smell

detection.

1. Guggulothu et.al [2019] researched on code smell and

give a new machine learning algorithm which work on

multi-label classification for detection of code smell. This

multi- label technique is use to remove the errors from

multiple lines at one time. This technique is enhanced

technique for single line detection algorithm. These

researchers only focused only remove the errors in less

time or we can say that this researcher only work on time

complexity. This is the major drawback of this research

that this technique not give the accurate result of detection

of code sometimes the inherited code do not detect by this

technique.[1]

2. Xinghua et.al [2016] researched on code smell

detection tools, these researchers gives a new tool for

detection of code smell. They researched a new tool name

called DT which work on automatically detection of code

smell from a code when errors comes. This algorithm is

better than iplasma,PMD,checkstyle named tools which

were used for detection of errors in a code. The major

disadvantage of this tool that it only worked on 11 types of

errors not on the every types of errors this is the major

drawback of this research.[2]

3. Muhammad et.al [2019] worked on machine learning

to detect the code smell. These researcher only detect the

long method code detection by using SVM(support vector

machine) technique. This is one of useful technique for

smell detection in a code, but this researcher only use it on

a particular type of error. This is not useful for the all the

other type of errors.[3]

4. Paiva et.al [2017] researched on code smell detection

by using four different detection tools. These four

detection tools were nFusion, JDeodorant, PMD, and

JSpIRIT. These technique used on different versions of

same software. These four tools detect the three different

types of code smells like : God class, God Method and

feature envy. All these techniques works on these

techniques but only in the form classes, these tools only

work on classes rather than objects.[4]

5. Mariani et.al[2011] researched on different

techniques of different projects, these researchers gave a

brief survey of different smell detection techniques for

code detection. These techniques worked on accuracy of

the data. Not all these technique presented a useful tool or

technique for smell code detection. Only all the

techniques worked on GUI of the code.[5]

IV. PROBLEM FORMULATION

In previous research, researchers only worked on code

smell and give a new machine-learning algorithm which

work on multi-label classification for detection of code

smell. This multi- label technique is use to remove the

errors from multiple lines at one time. This technique is

enhanced technique for single line detection algorithm.

These researchers only focused only remove the errors in

less time or we can say that this researcher only work on

time complexity. This is the major drawback of this

research that this technique not give the accurate result of

detection of code sometimes the inherited code do not

detect by this technique. In proposed technique we try to

enhance the technique for code smell detection by using

combination of multi-label classification and decision tree

and SVM.

 International Journal of Computer Sciences and Engineering Vol.8(12), Dec 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 68

OBJECTIVES:

1. Detect the code smell detection

2. Improve the accuracy of the code using decision tree

3. Improve the time complexity by using multilabel

detection

4. Detect the smell or error from the code by using SVM

technique of Machine Learning.

5. Compare the accuracy of previous research which was

done only using multi label detection and our new

Enhanced algorithm by using SVM.

V. RESEARCH METHODLOGY

In proposed technique, we will try to improve the

drawbacks of existing technique by using following steps.

1. Select the dataset.

2. Start finding the smell from code by using Decision

tree classification.

3. Make a Tree of smells from the code.

4. Use the multi-label classification for detect the smell

from the code.

5. Make the detected code.

6. Apply the SVM (support vector machine) for final

classification on the code give accurate result.

7. Propose a new algorithm by using these techniques.

VI. RESULTS AND DISCUSSION

A support vector machine (SVM) is machine-learning

algorithm that analyzes data for classification and

regression analysis. SVM is a supervised learning method

that looks at data and sorts it into one of two categories.

Find the Training data set:

SVM is a supervised machine learning algorithm which

can be used for classification or regression problems. It

uses a technique called the kernel trick to transform your

data and then based on these transformations it finds an

optimal boundary between the possible outputs.

Figure 2

Testing the data variables:

Time Complexity comparison:

VII. CONCLUSION

In this Research, we try to improve the accuracy of code

smell detection. Smell in a code means errors in code .In

this research we improve the time complexity as well

which take less time to find out an error from the large

code.

 International Journal of Computer Sciences and Engineering Vol.8(12), Dec 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 69

REFERENCES

[1] Thirupathi Guggulothu, Salman Abdul Moiz_Code Smell

Detection using Multilabel Classi_cation Approach,School of

Computer and Information Sciences, University of Hyderabad,

Hyderabad-500 046, Telangana, India

[2] DT : a detection tool to automatically detect code smell in

software project Xinghua Liu1, a and Cheng Zhang2, b 1 School

of Computer Science and Technology，Anhui University, China

2 School of Computer Science and Technology ， Anhui

University, China a xinghua.liu@ahu.edu.cn ， b

cheng.zhang@ahu.edu.cn

[3] Information and Software Technology,Volume 108, April 2019,

Pages 115-138 “Machine learning techniques for code smell

detection: A systematic literature review and meta-analysis”

Muhammad

IlyasAzeem
ab

FabioPalomba
d
LinShi

ab
QingWang

abc
,Laboratory for

Internet Software Technologies, Institute of Software, Chinese

Academy of Sciences, Beijing 100190, China

[4] “On the evaluation of code smells and detection tools” ,Thanis

Paiva, Amanda Damasceno, Eduardo Figueiredo & Cláudio

Sant’Anna ,Journal of Software Engineering Research and

Development volume 5, Article number: 7 (2017)

[5]An experience report on using code smells detection tools

Francesca Ar[5]Università of Milano Bicocca Department of

Computer Science Milano, Italy arcelli@disco.unimib.it ,Andrea

Morniroli, Raul Sormani, Alberto Tonello ,University of Milano

Bicocca Department of ComputerScience Milano, Italy

a.morniroli@campus.unimib.it

[6]https://becominghuman.ai/decision-trees-in-machine-learning-

f362b296594a

https://www.sciencedirect.com/science/journal/09505849
https://www.sciencedirect.com/science/journal/09505849/108/supp/C
https://www.sciencedirect.com/science/article/abs/pii/S0950584918302623#!
https://www.sciencedirect.com/science/article/abs/pii/S0950584918302623#!
https://www.sciencedirect.com/science/article/abs/pii/S0950584918302623#!
https://www.sciencedirect.com/science/article/abs/pii/S0950584918302623#!
https://www.sciencedirect.com/science/article/abs/pii/S0950584918302623#!
https://link.springer.com/article/10.1186/s40411-017-0041-1#auth-1
https://link.springer.com/article/10.1186/s40411-017-0041-1#auth-1
https://link.springer.com/article/10.1186/s40411-017-0041-1#auth-2
https://link.springer.com/article/10.1186/s40411-017-0041-1#auth-3
https://link.springer.com/article/10.1186/s40411-017-0041-1#auth-4
https://link.springer.com/article/10.1186/s40411-017-0041-1#auth-4
https://link.springer.com/journal/40411
https://link.springer.com/journal/40411

