
© 2018, IJCSE All Rights Reserved 777

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-6, Issue-11, Nov 2018 E-ISSN: 2347-2693

Scaling and Testing Refactoring Preconditions in Refactoring Engines

Padakanti Divya

1*
, Karanam Madhavi

2

1
Department of Information Technology, GRIET, Hyderabad, India

2
 Department of Computer Science and Engineering, GRIET, Hyderabad, India

*Corresponding Author: divyajalender@gmail.com, Tel.: 8897203208

Available online at: www.ijcseonline.org

Accepted: 22/Nov/2018, Published: 30/Nov/2018

Abstract— Demonstrating refactoring sound as for a formal semantics is viewed as a test. Designers compose test cases to

check their refactoring implementations. However, it is troublesome and time expending to have a decent test suite since it

requires complex sources of info (programs) and a prophet to check whether it is conceivable to apply the transformation. In

the event that it is conceivable, the subsequent program must save the perceptible conduct. There are some computerized

strategies for testing refactoring motors. In any case, they may have impediments identified with the program generator

(comprehensiveness, setup, expressiveness), automation (sorts of prophets, bug classification), time utilization or sorts of

refactoring that can be tried. This paper stretches out past system to test refactoring engines. It likewise clarifies the

enhancement expressiveness of the program generator for testing more kinds of refactoring's, such as Extract Function.

Moreover, developers simply need to determine the information's structure in an explanatory dialect. They may likewise set the

system to skip some continuous test contributions to enhance performance. This additionally assesses strategy in 18 kinds of

refactoring implementations of Java and distinguishes 35 bugs identified with aggregation blunders, behavioral changes, and

overly strong conditions. This paper thinks about the effect of the skip on the time utilization and bug detection in this

proposed method. By using a skip of 25 in the program generator, it decreases in 96%the times to test the refactoring

implementations while missing only 3.9% of the bugs. In almost no time, it finds the principal failure related to aggregation

blunder or behavioral change.

Keywords: Refactoring, overly strong preconditions, automated testing, program generation

I. INTRODUCTION

Characterizing and executing refactoring's is a nontrivial

task since it is hard to characterize all preconditions to

ensure that the transformation protects the program conduct.

In fact, proving refactoring rightness for whole dialects such

as Java and C comprises a test [1]. Thus, refactoring engines

may have bugs [2], [3]. By and by, developers of refactoring

motors utilize tests to assess the refactoring

implementations. However, testing refactoring motors isn't

trivial since it requires complex data sources, such as

programs, and an oracle to characterize the right coming

about the program or whether the transformation must be

rejected. Physically composing test cases may be expensive,

and in this way, it might be hard to make a good test suite

considering all the dialect develops.

Scientists have proposed various automated methods for

testing refactoring engines [3], [4], [5], [6].They automate

four noteworthy strides of the testing procedure: (I) creating

test inputs; (ii) applying the refactoring implementation; (iii)

checking the yield accuracy; (iv) and classifying the

identified failures into distinct bugs. In spite of the fact that

these systems have identified various bugs in refactoring

engines, it remains a question whether they scale to

distinguish more bugs without impressive effort.

To reduce the time to test the refactoring implementations,

this paper actualizes a technique to avoid some continuous

test inputs [8]. Back to back programs created by DOLLY

will, in general, be fundamentally the same as, possibly

distinguishing a similar kind of bug. Thus, developers can

set a parameter to avoid a few programs to reduce the time

to test the refactoring implementations. By skirting these

programs, this proposed technique can reduce the Time to First

Failure (TTFF), decreasing the developer inactive time [8].

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 778

The proposed technique utilizes an arrangement of automated

prophets to evaluate the rightness of the transformations identified

with assemblage mistakes, behavioral changes, and overly strong

conditions. In the wake of recognizing the failures, the technique

utilizes an arrangement of automated bug categorizers to classify

every single failing transformation into distinct bugs. For

simplification, the new technique utilizes the term transformation to

allude to a refactoring or a failing transformation.

Here evaluated 18 kinds of refactoring implementations of Just Add

Refactoring Tools (JRRT) [9], Eclipse JDT (Java) and Eclipse CDT

(C). 76 (53 new bugs) bugs in a total of 49 bugs identified with

assemblage blunders, 17 bugs identified with behavioral changes,

and 10 bugs identified with overly strong conditions. Among those

bugs, 28 bugs in refactoring's connected inside function level.

The time utilization and bug detection have been analyzed in this

proposed technique. By utilizing a skip of 25 in the program

generator, it reduces in 96% the time to test the refactoring

implementations while missing just 3.9% of the bugs. Moreover, by

utilizing this equivalent skirt the proposed strategy locate the first

failure as a rule in almost no time. In this way, the refactoring

motor developer can discover a bug in the refactoring

implementation generally rapidly, settle it, run the proposed

technique again to discover another bug, et cetera. Before a release,

tool developers can run the technique without the jump to locate

some missed bugs.

Proposed system:

This technique proposes Disabling Preconditions (DP), a new

technique to recognize overly strong preconditions in refactoring

implementations by disabling preconditions. From now on we

allude to disabling preconditions as the way toward forestalling to

report messages to the client, raised by the preconditions. A

message is accounted for when a precondition is unsatisfied.

Proposed technique automatically create various programs as test

inputs, utilizing JDOLLY. For each created program, we endeavor

to apply the transformation utilizing the refactoring implementation

that is being tried. At the point when the refactoring

implementation rejects a transformation, it reports a message to the

client depicting the issue. For every kind of message, Proposed

technique distinguish code fragments identified with the

precondition that yields the message. There might be various

preconditions identified with each message, yet for effortlessness,

we consider, for each refactoring implementation, one precondition

per message in our technique. Next, Proposed technique modify the

refactoring implementation to cripple the code fragments that kept

the refactoring application. This technique proposes the DP

changes to encourage and systematize the way toward modifying

the code to permit disabling preconditions.

II. LITERATURE SURVEY

So are et al., [3] propose a Java program generator called JDOLLY

for exhaustively making programs. By using JDOLLY, fashioners

can show the amount of some Java constructs and confinements for

the made programs by using Compound [7], a formal detail

vernacular. They used JDOLLY to make more than 100,000

projects. Though JDOLLY can lessen the effort for delivering Java

programs, it just makes programs with straightforward system

bodies (only a solitary clarification), which isn't adequate to test

refactoring’s inside technique level. Moreover, altogether making

programs, for few Java fabricates, can require an impressive

measure of time.

[2] M. Vakilian and R. Johnson, “Alternate refactoring paths

reveal usability problems”, Current Integrated Development

Environments (IDEs) bolster numerous refactoring's. However,

programmers incredibly underutilize automated refactoring's.

Ongoing examinations have connected customary ease of use

testing strategies such as studies, lab studies, and meetings to

discover the ease of use issues of refactoring tools. Nonetheless,

these procedures can recognize just specific kinds of ease of use

issues. The critical incident technique (CIT) is a general procedure

that reveals ease of use issues by dissecting disturbing client

connections. The strategy adjusts CIT to refactoring tools and

demonstrates that other refactoring paths are indicators of the ease

of use issues of refactoring tools. It characterizes another

refactoring path as a sequence of client communications that

contains undoing's, revealed messages, or rehashed summons of the

refactoring tool.

[3] M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba,

“Making refactoring safer through impact analysis”, As of now

most developers need to apply for manual advances and utilize test

suites to enhance certainty that transformations connected to protest

arranged (OO) and aspect-situated (AO) programs are right.

Notwithstanding, it isn't easy to do manual reasoning, due to the

nontrivial semantics of OO and AO dialects. Moreover, most

refactoring implementations contain various bugs since it is hard to

set up all conditions required for a transformation to conduct

safeguarding. In this article, the new technique proposes a tool

(Safe Refactor Impact) that investigates the transformation and

creates tests just for the strategies impacted by a transformation

distinguished by change impact analyzer (Safira). contrast the Safe

Refactor Impact and the past tool (Safe Refactor) as for rightness,

performance, the number of strategies passed to the automatic test

suite generator, change inclusion, and the number of pertinent tests

produced in 45 transformations. Safe Refactor Impact recognizes

behavioral changes undetected by Safe Refactor. Moreover, it

reduces the number of techniques passed to the test suite generator.

[4] G. Soares, R. Gheyi, E. Murphy-Hill, and B. Johnson,

“Comparing Approaches to Analyze Refactoring Activity on

Software Repositories”, A few approaches have been utilized to

examine proof on how developers refactor their code, whether

refactoring's exercises may decrease the quantity of bugs, or

enhance developers' profitability. Be that as it may, there is some

negating proof in past investigations. Here recognize submitted

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 779

conduct protecting transformations in software repositories by

utilizing manual examination, submit messages or dynamic

investigation. Others center around distinguishing which

refactoring's are connected between two programs by utilizing

manual examination or static investigation. In this paper, look at

the three changed approaches based on a manual investigation,

submit a message (Ratzinger's approach) and dynamic examination

(SAFE REFACTOR's approach) to recognize whether a couple of

forms decides a refactoring, as far as behavioral protection.

[5] G. Soares, R. Gheyi, and T. Massoni, “Automated behavioral

testing of refactoring engines", Refactoring is a transformation that

saves the outside conduct of a program and enhances its interior

quality. More often than not, arrangement mistakes and behavioral

changes are maintained a strategic distance from by preconditions

decided for each refactoring transformation. Be that as it may, to

formally characterize these preconditions and exchange them to

program checks is a rather mind-boggling task. Practically

speaking, refactoring motor developers ordinarily actualize

refactoring's in a specially appointed way since no rules are

accessible for assessing the accuracy of refactoring

implementations. Accordingly, even standard refactoring engines

contain critical bugs. This paper presents a technique to test Java

refactoring engines. It automates test input generation by utilizing a

Java program generator that thoroughly creates programs for a

given extent of Java affirmations. The refactoring under test is

connected to each produced program. The technique utilizes Safe

Refactor, a tool for distinguishing behavioral changes, as a prophet

to evaluate the accuracy of these transformations. At long last, the

technique classifies the failing transformations by the kind of

behavioral change or assemblage blunder presented by them.

[6] S. Negara, N. Chen, M. Vakilian, R. Johnson, and D. Dig, “A

comparative study of manual and automated refactorings”,

Regardless of the tremendous achievement that manual and

automated refactoring has appreciated amid the last decade.

Understanding the refactoring practice is critical for developers,

refactoring tool manufacturers, and analysts. Numerous past

approaches to consider refactorings are based on looking at code

previews, which is loose, inadequate, and does not permit noting

research questions that include time or think about manual and

automated refactoring. This paper displays the first expanded

experimental investigation that considers both manual and

automated refactoring. This examination is empowered by

proposed technique calculation, which derives refactorings from

constant changes.

III. PROBLEM STATEMENT

In existing work utilizes Differential Testing to automatically

recognize transformations dismissed by refactoring engines

because of overly strong preconditions (DT technique). It

automatically produces various programs as test inputs utilizing

JDOLLY, a Java program generator. Next, it applies the equivalent

refactoring to each test input utilizing two distinct implementations

and thinks about the two outcomes. The technique utilizes

SAFEREFACTOR to automatically evaluate whether a

transformation protects the program conduct. SAFEREFACTOR

automatically evaluates whether two variants of a program have a

similar conduct via automatically producing experiments just for

the normal techniques impacted by the change. To utilize this

technique, developers require access to something like two

refactoring engines. Be that as it may, it must be utilized if both

refactoring engines execute the equivalent refactoring.

IV. IMPLEMENTATION PROCEDURE

Detecting Overly Strong Preconditions

In this section, the proposed technique to recognize overly strong

preconditions in refactoring implementations utilizing the DP

prophet. The Proposed technique gets as

info a refactoring implementation, the DP changes used to permit

disabling the preconditions, and a few parameters to design

DOLLY, such as skip, scope, and extra limitations. Each

precondition checks whether the transformation may present a

particular issue in the program, which can result in gathering

mistakes or behavioral changes. The technique restores the adjusted

refactoring implementation and all transformations that yield an

arrangement of overly strong preconditions in the first refactoring

implementation.

The main steps of the technique.

Step 1: Next, the refactoring implementation under test endeavors

to apply the transformations to each created program. On the off

chance that the refactoring implementation rejects a transformation,

the messages will be gathered and answered to the client.

Step 2: For every kind of message, the refactoring implementation

code reviewed and physically recognize the code fragments

identified with the precondition that raises it. One assumption

ought to be made, for each refactoring implementation, that there is

one precondition identified with every kind of message. Then, one

adjustment ought to be done such that the refactoring

implementation code by adding If explanations to permit disabling

the execution of the distinguished precondition utilizing the DP

changes

Step 3: The objective is to apply the transformation as opposed to

detailing the message again.Once the technique changes the

refactoring implementation code to permit automatically disabling

the preconditions, and evaluate them. For every transformation

dismissed by the refactoring implementation, it automatically

endeavors to apply a similar transformation again with a debilitated

precondition

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 780

Step 4: In the event that the refactoring implementation rejects the

transformation and reports another message, it rehashes the

procedure by disabling more preconditions until the point when the

refactoring implementation applies a transformation. On the off

chance that the altered refactoring implementation applies the

transformation and the subsequent program protects the program

conduct as indicated by SAFE REFACTOR IMPACT, then the

technique classifies the arrangement of impaired preconditions as

overly strong

Step 5: Otherwise, it breaks down the following rejected

transformation. When the classification is over a precondition as

overly strong, it won't be evaluated again with other sources of info

produced by DOLLY that yield a similar message. Calculation 1

condenses the fundamental advances. Next, this paper clarifies in

more subtle elements the way toward disabling the preconditions.

V. DETECT OVERLY STRONG PRECONDITION

TECHNIQUE

Input: refactoring implementation R, skip, scope, constraints,

timeLimit, DP changes

Step 1. progs= DOLLY.generate(skip, scope, constraints);

progs’ = Ø; . A set of pairs of programs and messages

msgs= Ø; . A set of all messages reported by R

Step 2. foreachprog∈progs do

msg= R.canApplyRefactoring(prog); .canApplyRefactoring yields

one message, for simplicity,

ifR cannot apply it

ifmsg≠Øthen

progs’.add(hprog, msgi);

msgs.add(msg); . For simplicity, it does not show that it removes

some names and keywords from msg

map= Ø; . A set of all mappings of messages to preconditions

Step 3.1. Create a class: public class ConditionsR{ public static

void enableConditions() {} };

Step 3.2. foreachmsg∈msgs do

Step 3.2.1. Identify how msgis represented in R; .Specific for each

refactoring engine

Step 3.2.2. Create a fresh public static boolean field (cond) in

ConditionsR. Add cond= true in enableConditions;

Step 3.2.3. map.add(hmsg, condi); . It relates each message to a

condition

Step 3.3. Identify how to prevent reporting messages to user in R;

.Specific for each refactoring engine

R’ = R; R’ will contain the modified refactoring implementation

Step 3.4. foreachmsg∈msgs do

Step 3.4.1. places= Identify all places in R that can prevent

reporting msgto user;

Step 3.4.2. foreach place ∈places do

R’ = applyDPChange(DPChanges, R’, place, msg, map); . Add if

(ConditionsR.cond) {place}. Specific for each ref. engine

transformations= Ø; . A set containing all transformations applied

by R’

Step 4. foreachhprog, msgi∈progs’ do

Step 4.1. ConditionsR.enableConditions(); . It enables all

preconditions

Step 4.2. ConditionsR.(map.getCondition(msg)) = false; . It

disables a condition related to msg

Step 4.3. msg= R’.canApplyRefactoring(prog);

ifmsg∈msgs then

go to Step 4.2;

else if msg = Øthen

transformations.add(hprog, R’.applyRefactoring(prog)i); . It saves

a transformation that does not yield a message

else

continue; . For simplicity, it does not focus on disabling

preconditions related to messages not reported in Step 2

result= ∅;

Step 5. foreach t ∈transformations do

ifSAFEREFACTORIMPACT(t.input,t.output,

timeLimit).hasSameBehavior() then

result.add(t); . It saves a behavior preserving transformation

applied by R’[25]

VI. DP CHANGES IN ECLIPSE

Eclipse actualizes a class (Refactoring Status) that stores the result

of the preconditions checking operation. It contains methods,such

as addError, addEntry, addWarning, createStatus,

createFatalErrorStatus,createErrorStatus, and createWarningStatus.

Those strategies get a message and other contentions, portraying a

particular issue distinguished amid the precondition checking. The

strategies began with make restore a Refactoring Status Protest.

The messages are stored in the refactoring. Properties record. A

field from the Refactoring Core Messages class speaks to them.

They can be specifically gotten to by a field call or through a

variable, parameter of the strategy, or the arrival of a technique

called.

The refactoring implementations of Eclipse check the status of a

transformation, in a Refactoring Status protest, in the wake of

assessing the preconditions. If it contains some notice or mistakes

messages, Eclipse rejects the transformation and reports the

messages to the client. This paper proposes the Eclipse DP changes

by breaking down the littlest code fragment, which requirements to

incapacitate for maintaining a strategic distance from the motor to

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 781

include a new blunder or cautioning status in a Refactoring Status

object. DP Change 2 keeps Eclipse from announcing mistake

messages.

VII. RESULTS EVOLUTIONS

The proposed technique chose up to 10 refactoring

implementations from Eclipse JDT 3.7, NetBeans 7.0.1. Afterward,

a new form was released with enhancements and bug settling

(which likewise call JRRTv2); this new form was additionally

subject to analysis. Table 1 demonstrates all evaluated refactorings.

The evaluated refactoring’s center around a delegate set of program

structures. Moreover, a study did demonstrate the Eclipse JDT

refactoring’s that Java developers utilize most: Rename, Move

Method, Extract Method, Pull Up Method, and Add Parameter.

Four of these are evaluated in this article. The Move Method

refactoring was not bolstered by NetBeans When that this article

was composed.

Table 1: Summary of scope and constraints for each refactoring

Refactoring Scope (P - C - F - M) Main constraint

Rename Class 2-3-0-3 some class

Rename Method 2-3-0-3 some Method

Rename Field 2-3-2-1 some Field

Push Down Method 2-3-0-4 some c:Class k someSubClass[c] and someMethod[c]

Push Down Field 2-3-2-1 some c:Class k someSubClass[c] and someField[c]

Pull Up Method 2-3-0-4 some c:Class k someParent[c] and someMethod[c]

Pull Up Field 2-3-2-1 some c:Class k someParent[c] and someField[c]

Encapsulate Field 2-3-1-3 some Field

Move Method 2-3-1-3 some c:Class k someTargetClassField[c] and someMethodToMove[c]

Add Parameter 2-3-0-3 some Method

Scope = Package (P) - Class (C) - Field (F) - Method (M).

Table 2 synopses the experiment results. Segments Program and

Time demonstrate the number of programs created by JDOLLY for

each refactoring and the normal time for testing the refactoring

implementations from each engine. Columns Comp. error., Behav.

cha. and Overly strong demonstrates the total number of

transformations connected by Eclipse, Net-Beans, JRRTv1, and

JRRTv2 that delivered gathering errors, behavioral changes, and

that were not connected due to overly strong conditions,

respectively. Considering all refactorings, JDOLLY produced

153,444 programs, and new technique distinguished 43,235

transformations with assemblage blunders, 27,597 ones with

behavioral changes, and 70,832 that were not connected due to

overly strong conditions. Even, however, Eclipse, JRRT, and

NetBeans have their own test suites, new technique recognized 120

(likely) remarkablebugs.

Table 2: Overall experimental results

Refactoring Program Time(h) Comp. error. Behav. cha. Overly strong

Rename Class 15322 6.7 4368 160 4528

Rename Method 11263 6.9 2290 1713 4003

Rename Field 19424 29.3 894 1834 2728

Push Down Method 20544 11.9 13579 3312 16891

Push Down Field 11936 6 7231 119 7350

Pull Up Method 8937 7.3 3867 1363 5230

Pull Up Field 10927 8.6 1726 785 2511

Encapsulate Field 2000 2.5 472 1220 1692

Move Method 22905 10.3 1321 12289 13610

Add Parameter 30186 34.69 7487 4802 12289

Total 153444 124.19 43235 27597 70832

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 782

Table 3 outlines the bugs answered to Eclipse JDT, Net-Beans

and JRRT. new technique distinguished 34 overly powerless

preconditions in Eclipse. Albeit every one of them was

acknowledged by the Eclipse developers, 16 of them were named

as copied. Up until now, they have settled only two of them. In

NetBeans, new technique recognized 51 overly powerless

preconditions. Net-Beans group has officially acknowledged 30

of them and settled 7 bugs. In the interim, here 24 overly frail

preconditions to JRRTv1, from which 20 were acknowledged and

settled (4 of the bugs were not viewed as bugs because of a shut

world assumption of JRRT developers)it additionally announced

more 11 bugs to JRRTv2, from which 6 were acknowledged and

settled. JRRT group additionally fused experiments into their test

suite.

The proposed technique did not find overly strong preconditions

in NetBeans but identified 16 ones in Eclipse.

Table 3: Summary of reported bugs.

Engine Submitted Accepted Duplicated Not accepted Not answered fixed

Eclipse 34 34 16 0 0 2

VIII. CONCLUSION

Bridges the bugs answered to Eclipse JDT, Net-Beans and JRRT.

new technique recognized 34 overly frail preconditions in Eclipse.

Albeit every one of them was acknowledged by the Eclipse

developers, 16 of them were marked as copied. Up until this point,

they have settled only two of them. In NetBeans, new technique

distinguished 51 overly feeble preconditions. Net-Beans group has

officially acknowledged 30 of them and settled 7 bugs. In the

interim, here 24 overly powerless preconditions to JRRTv1, from

which 20 were acknowledged and settled (4 of the bugs were not

viewed as bugs because of a shut world assumption of JRRT

developers)it likewise revealed more 11 bugs to JRRTv2, from

which 6 were acknowledged and settled. JRRT group likewise

consolidated experiments into their test suite.

IX. REFERENCES

[1] M. Schafer, T. Ekman, and O. de Moor, “Challenge proposal:

verification of refactorings,” In PLPV, 2008, pp. 67–72.

[2] G. Soares, M. Mongiovi, and R. Gheyi, "Identifying overly strong

conditions in refactoring implementations," in ICSM, 2011, pp.

173–182.

[3] G. Soares, R. Gheyi, and T. Massoni, "Automated behavioral

testing of refactoring engines,” IEEE Transactions on Software

Engineering, vol. 39, pp. 147–162, 2013.

[4] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing

of refactoring engines,” in FSE, 2007, pp. 185–194.

[5] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and.

Marinov, “Test generation through programming in UDITA,” in

ICSE,2010, pp. 225–234.

[6] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, and D.

Marinov, on reals"Systematic testing of refactoring engines

software projects," inECOOP, 2013, pp. 629–653.

[7] D. Jackson, “Software Abstractions: Logic, Language, and

Analysis.Revised edition. “The MIT Press, 2012.

[8] V. Jagannath, Y. Lee, B. Daniel, and D. Marinov, “Reducing the

costs of bounded-exhaustive testing,” in FASE, 2009, pp. 171–

185.

[9] M. Sch¨afer and O. Moor, “Specifying and implementing

refactorings," in OOPSLA, 2010, pp. 286–301.

[10] D. Jackson, I. Schechter, and H. Shlyahter, “Alcoa: the Alloy

constraint analyzer,” in ICSE, 2000, pp. 730–733.

[11] M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba,

“Makingrefactoring safer through impact analysis,” SCP, 2014, In

press.

[12] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making program

refactoring safer,” IEEE Software, vol. 27, pp. 52–57, 2010.

[13] W. Mckeeman, “Differential testing for software,” Digital

TechnicalJournal, vol. 10, no. 1, pp. 100–107, 1998.

[14] E. Torlak and D. Jackson, “Kodkod: A relational model finder,”

inTACAS. Wiley, 2007, pp. 632–647.

[15] G. Soares, R. Gheyi, E. Murphy-Hill, and B. Johnson, “comparing

approaches to Analyze Refactoring Activity on Software

Repositories, "JSS, pp. 1006–1022, 2013.

[16] W. Opdyke, “Refactoring Object-Oriented frameworks,” Ph.D.

dissertation, the University of Illinois at Urbana-Champaign,

1992.

[17] L. Tokuda and D. Batory, “Evolving object-oriented designs with

refactorings,” ASE, vol. 8, pp. 89–120, 2001.

[18] A. Garrido and R. Johnson, “Refactoring C with conditional

compilation," in ASE, 2003, pp. 323–326.

[19] A. Garrido and R. E. Johnson, “Analyzing multiple configurations

of a program,” in ICSM, 2005, pp. 379–388.

[20] F. Steinmann and A. Thies, “From public to private to absent:

RefactoringJava programs under constrained accessibility,” in

ECOOP, 2009, pp.419–443.

[21] P. Borba, A. Sampaio, A. Cavalcanti, and M. Cornelio, “Algebraic

reasoning for Object-Oriented programming,” “SCP, vol. 52, pp.

53–100,2004.

[22] L. Silva, A. Sampaio, and Z. Liu, “Laws of Object-Orientation

with reference semantics,” in SEFM, 2008, pp. 217–226.

[23] H. Li and S. Thompson, “Testing ErlangRefactorings

withQuickCheck,” in IFL, 2008, pp. 19–36.

[24] M. Vakilian and R. E. Johnson, “Alternate refactoring paths reveal

usability problems,” in ICSE, 2014, pp. 1–11.

[25] Melina Mongiovi Member, Rohit Gheyi, Gustavo Soares, Márcio

Ribeiro, Paulo Borba, "Detecting overly strong preconditions in

refactoring engines" IEEE 2017.

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 783

[26] Geeta Bagade, Shashank Joshi “Analysis of Aspect-Oriented

Systems: Refactorings using AspectJ” International Journal of

Computer Sciences and Engineering,Vol.4, Issue .5, pp.76-80,

May-2016

[27] Nagaveni, A. Ananda Rao, P. Radhika Raju, “Testing Refactoring

Implementations of Object-Oriented Systems”International Journal

of Computer Sciences and Engineering, Vol.6 , Issue.7,pp.530-

534, Jul-2018

Authors Profile

Padakanti Divya is currently pursuing Masterof

Technology from Gokaraju Rangaraju Institute of

Engineering and Technology, Hyderabad. She has

pursued Bachelor of Technology in 2016 from

Balaji Institute of Technology and Science,

Warangal. Her main research work focuses on

Software Engineering.

Karanam Madhavi, working as a Professor in

Computer Science and Engineering

Department, Gokaraju Rangaraju Institute of

Engineering and Technology. She has completed

her B.E in 1997, M.Tech from JNTUA in 2003 and

awarded Ph.D. from JNTUA in 2013. She has 19 years of

teaching experience. She has published several papers in reputed

international journals and international conferences. Her research

interest includes software engineering, Model Driven

Engineering, Data Mining, and Mobile software engineering.

http://www.ijcseonline.org/pdf_paper_view.php?paper_id=906&12-IJCSE-01639.pdf
http://www.ijcseonline.org/pdf_paper_view.php?paper_id=906&12-IJCSE-01639.pdf
http://www.ijcseonline.org/pdf_paper_view.php?paper_id=2468&82-IJCSE-04174.pdf
http://www.ijcseonline.org/pdf_paper_view.php?paper_id=2468&82-IJCSE-04174.pdf

