

 © 2018, IJCSE All Rights Reserved 768

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-12, Dec 2018 E-ISSN: 2347-2693

Migration from Subversion to Git Version Control System

Monika Varshney
1*

, Azad Kumar Shrivastava
2
,

Alok Aggarwal

3
, Adarsh Kumar

3

1,2

Department of Computer Science, Mewar University, Chittorgarh (Raj), India
3
School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India

*Corresponding Author: monikafpc@gmail.com

Available online at: www.ijcseonline.org

Accepted: 26/Dec/2018, Published: 31/Dec/2018

Abstract - In recent years, software development in software industries is getting a transition from centralized version control

systems (CVCSs) like subversion, mercurial, perforce, CVS etc. to decentralized version control systems (DVCSs) like Git

due to a number of reasons like time, space, branching, merging, offline commits & builds and repository etc. Both

centralized VCSs and distributed VCSs have gone through ample investigations in recent past but individually from the

software developer’s point of view in a large commercial software industry. There has been a little focus on the transition

across Git having a share of more than three-fourth of total VCS, and Subversion having a share of 13.5%. In this work

transition process from Subversion VCS to Git VCS has been investigated.

Keywords - Version control system, distributed VCS, centralized VCS, transition, branching, merging, time, space

I. INTRODUCTION

An enormous growth has been witnessed during the last five

decades by computers. Computers have evolved from very

expensive hall sized systems to large mainframes used by

fortune 500 companies, to the advent of affordable personal

computers, to the most recent mobile and cloud computing

on minimal devices. Memory and storage have always been

a very vital parts of any computer system and as systems

have modernized, file systems have been created and

evolved in order to keep up. Version control is often used by

software developers that helps a software team to manage

changes to source code over time. In a special kind of

database, a trace is kept of every modification in the

software by a Version Control System (VCS).

VCS has a very long history in computing starting from the

source code control system, developed in 1972. Now-a-days

VCS are quite popular and becoming essential so with the

advent of cloud based systems, such as Github, Bitbucket

etc. For almost all software projects, the source code is like

the crown jewels - a precious asset whose value must be

protected. For most software teams, the source code is a

repository of the invaluable knowledge and understanding

about the problem domain that the developers have collected

and refined through careful effort. Version control protects

source code from both catastrophe and the casual

degradation of human error and unintended consequences.

Software developers working in teams are continually

writing new source code and changing existing source code.

The code for a project, app or software component is

typically organized in a folder structure or "file tree". One

developer on the team may be working on a new feature

while another developer fixes an unrelated bug by changing

code, each developer may make their changes in several

parts of the file tree. While it is possible to develop software

without using any version control, doing so subjects the

project to a huge risk that no professional team would be

advised to accept. Good version control software supports a

developer's preferred workflow without imposing one

particular way of working. Ideally it also works on any

platform, rather than dictate what operating system or tool

chain developers must use. Great version control systems

facilitate a smooth and continuous flow of changes to the

code rather than the frustrating and clumsy mechanism of

file locking - giving the green light to one developer at the

expense of blocking the progress of others.

Software teams that do not use any form of version control

often run into problems like not knowing which changes that

have been made are available to users or the creation of

incompatible changes between two unrelated pieces of work

that must then be painstakingly untangled and reworked. If

you're a developer who has never used version control you

may have added versions to your files, perhaps with suffixes

like "final" or "latest" and then had to later deal with a new

final version. Perhaps you've commented out code blocks

because you want to disable certain functionality without

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 769

deleting the code, fearing that there may be a use for it later.

Version control is a way out of these problems.

Regardless of what they are called, or which system is used,

the primary benefits you should expect from version control

are as follows.

 A complete long-term change history of every file

 Branching and merging

 Traceability

In this work transition process from Subversion VCS to Git

VCS has been from software developer point of view

working individually or in a large team over a large and

complex software having a legacy of many decades. Rest the

paper is organized as follows. Related work done by earlier

researchers is reported in section 2. Section 3 gives VCS

with Git. Industry based tools for SVN to Git migration are

given in section 4. Work is finally concluded in section 5.

II. RELATED WORK

Although almost nothing in the published research work was

found concerning transition of Subversion VCS to Git VCS

with respect to time, space branching, merging and

repository aspects, there is much published research work on

the other version control systems [1]-[5], work which uses

Git as a file system [6]-[9]. In [9] transition from CVCS to

DVCS is investigated based on interviews and survey data

and some guidelines are proposed for the individual

developers, teams and managers who consider transitioning.

This work identifies ability to work offline and

incrementally and managing multiple contexts efficiently as

the major transition expectations which are satisfied by

commits and lightweight branches, available on most

DVCSs. In [10] authors have investigated the transition

process, challenges and anticipated benefits of four open

source software. In [11] an investigation has been done on

the way the developers use branches in an open source

software and how the transition affects the project branching

structure. A system has been described in [7] which exposes

the provenance stored in VCS which enables the easy

publication of VCS provenance on the web and subsequent

integration with other systems that make use of PROV.

III. VERSION CONTROL WITH GIT

There are various version control systems are being used.

Example: SVN, Mercurial, VCS, GIT and many more. By

far, the most widely used modern version control system in

the world today is Git. Git is a mature, actively maintained

open source project originally developed in 2005 by Linus

Torvalds, the famous creator of the Linux operating system

kernel. A staggering number of software projects rely on Git

for version control, including commercial projects as well as

open source. Developers who have worked with Git are well

represented in the pool of available software development

talent and it works well on a wide range of operating

systems and IDEs (Integrated Development Environments).

Google:

“Today, Git holds a commanding share of the VCS market

based on Google Trends data. However, Apache Subversion

and Mercurial are still used in many environments.”

Figure 1 shows the data collected from software engineers

working on Version Control Systems for the four years and

shows the percentage of different used VCSs. Figure 2 gives

the web search interest share of top 5 VCS in 2016.

Figure 1: Data Collected from different software engineers

working on Version Control Systems for the four years

Figure 2: Web search interest share of top 5 VCS in 2016

Having a distributed architecture, Git is an example of a

DVCS (Distributed Version Control System). Rather than

have only one single place for the full version history of the

software as is common in once-popular version control

systems like CVS or Subversion (also known as SVN), in

Git, every developer's working copy of the code is also a

repository that can contain the full history of all changes.

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 770

In addition to being distributed, Git has been designed with

performance, security and flexibility in mind. How Git is

better than other VCS in terms of command difrence is

shown in Table 1. Table 2 shows the different properties of

CVS, SVN and Git. Figure 3 gives a direct comparison of

Git with SVN.

Table 1: Command difference among major VCSs

Table 2: Different properties of CVS, SVN and Git

CATEGORY CVS SVN GIT

Distributed/Centra

lized

Centralized Centralized Distributed

Initial Release 1985 2001 2015

License GNU GPL GNU GPL GNU GPL

Version 1.11.7 1.5.6 1.6.1

OS Windows,

OS X,

UNIX

Windows,

OS X,

UNIX

Windows

(limited),

OS X,

UNIX

Atomic commits No Yes Yes

Move and

renames without

losing the history

No Yes (some

exceptions)

Yes (some

exceptions)

Partial checkouts Yes Yes No

Tracking of

branches and

merges

No Yes Yes

Revision numbers Increasing

integer

Increasing

integer

SHAI

Local repository No No Yes

Central repository Necessary Necessary Available

Workflow Static Static Flexible

User interface Sometimes

confusing

Good Rather

complex

Consistency

check

No No Yes (SHAI)

Tagging Expensive Cheap Cheap

Branches Expensive Cheap Cheap

Performance Very slow Slow Very good

Recognizes binary

files

Yes Yes Yes

Handling of

binary files

No diff Diff Diff

Compression of

repository

No No Yes

Two phase

locking

Available Available No

Path based

authentication

Yes Yes No

Figure 3: Direct comparison of Git with SVN

IV. INDUSTRY BASED TOOLS: SVN TO GIT

MIGRATION

There are many tools available in markets to migrate SVN to

Git but leading tools are SVN2Git and SubGit.

V. CONCLUSION

Version control systems protect source code from both

catastrophe and the casual degradation of human error and

 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 771

unintended consequences. Software developers working in

teams are continually writing new source code and changing

existing source code. The code for a project, app or software

component is typically organized in a folder structure or

"file tree." One developer in the team may be working on a

new feature while another developer fixes an unrelated bug

by changing code, each developer may make their changes

in several parts of the file tree. In this work transition

process from Subversion VCS to Git VCS has been from

software developer point of view working individually or in

a large team over a large and complex software having a

legacy of many decades.

REFERENCES

[1]. N. B. Ruparelia. “The history of version control,” ACM

SIGSOFT Software Engineering Notes vol. 35, no. 1, pp. 5-9,

2010.

[2]. B. De Alwis and J. Sillito, “Why are software projects moving

from centralized to decentralized version control systems?” ICSE

Workshop on Cooperative and Human Aspects on Software

Engineering (CHASE'09), pp. 36-39, 2009.

[3]. D. Spinellis. “Git,” IEEE Software, vol. 29, no. 3, pp. 100-101,

2012.

[4]. https://www2.physics.ox.ac.uk/it-services/moving-projects-

from-svn-to-git

[5]. https://stosb.com/static/talks/case_study_git_efl_linuxcon_eu_13

.pdf

[6]. Loeliger, J., Matthew McCullough, “Version Control with Git:

Powerful Tools and Techniques for Collaborative Software

Development,” O’Reilly Media, Inc. Second Edition, 2009.

[7]. Tom De Nies, Sara Magliacane, Ruben Verborgh, Sam Coppens,

Paul Groth, Erik Mannens, and Rik Van de Walle, “Git2PROV:

Exposing Version Control System Content as W3C PROV,”

Proc. 12
th
 Int. Semantic Web Conf., pp. 1-4, Oct. 2013.

[8]. C. Brindescu, M. Codoban, S. Shmarkatiuk and D. Dig, "How

Do Centralized and Distributed Version Control Systems Impact

Software Changes?," Proc. 36th Int. Conf. on Software

Engineering, Hyderabad, India, pp. 322-333, 2014.

[9]. Kıvanç Muşlu, Christian Bird, Nachiappan Nagappan, Christian

Bird, “Transition from Centralized to Decentralized Version

Control Systems: A Case Study on Reasons, Barriers, and

Outcomes,” Proc. Int. Conf. on Software Engineering ICSE-

2014, pp. 334-344, May 31- June 7, Hyderabad, India, 2014.

[10]. Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton,

Daniel M. German, Prem Devanbu, “The Promises and Perils of

Mining Git,” Proc. 6
th
 IEEE International Working Conference

on Mining Software Repositories, Vancouver, BC, Canada, May

16-17, pp. 1-10, 2009

[11]. E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German and

D. Premkumar, "Cohesive and Isolated Development with

Branches," Proc. 15th International Conference on Fundamental

Approaches to Software Engineering, Tallinn, Estonia, pp. 316-

331, March 24 - April 01, 2012.

Authors Profile

Monika Varshney is an Assistant Professor with Dr. Bhimrao

Ambedkar University, Agra, India and enrolled in

Ph.D. (C.S.E.) from , Mewar University, Gangar,

Chittorgarh (Raj) India. She received her M.C.A.

from IGNOU, New Delhi, India in the year 2008.

Her research interest includes Data mining, Data

Base Management System, Algorithm

development and Decision Support System etc.

Azad Shrivastava is Professor at Department of

Computer Science, Mewar University, Gangar,

Chittorgarh (Raj) India. He did his Ph.D. from

‘Atal Behari Vajpayee-Indian Institute of

Information Technology and Management’,

Gwalior, Madhya Pradesh, India in the year

2009. He has an academic, research, and industry

experience of about 14 years. He has been associated with CMC

Ltd., TCS, AETPL. His areas of interest include Deep Learning,

Machine learning, AI and NN & Big data on CPU & GPU Cluster

for DWH & IOT etc.

Alok Aggarwal received his bachelors’ and

masters’ degrees in Computer Science &

Engineering in 1995 and 2001 respectively and

his PhD degree in Engineering from IIT

Roorkee, Roorkee, India in 2010. He has

academic experience of 18 years, industry

experience of 4 years and research experience of 5 years. He has

contributed more than 150 research contributions in different

journals and conference proceedings. Currently he is working with

University of Petroleum & Energy Studies, Dehradun, India as

Professor in CSE department.

Dr. Adarsh Kumar received his Master degree

(M. Tech) in Software Engineering from Thapar

University, Patiala, Punjab, India, in 2005 and

earned his PhD degree from Jaypee Institute of

Information Technology University, Noida, India

in 2016 followed by Post-Doc from Software

Research Institute, Athlone Institute of

Technology, Ireland during 2016-2018. Currently, he is working

with University of Petroleum & Energy Studies, Dehradun, India as

Associate Professor in School of Computer Science.

https://www2.physics.ox.ac.uk/it-services/moving-projects-from-svn-to-git
https://www2.physics.ox.ac.uk/it-services/moving-projects-from-svn-to-git
https://stosb.com/static/talks/case_study_git_efl_linuxcon_eu_13.pdf
https://stosb.com/static/talks/case_study_git_efl_linuxcon_eu_13.pdf

