
© 2024, IJCSE All Rights Reserved 86

International Journal of Computer Sciences and Engineering
Vol.12, Issue.4, pp.86-100, April 2024

ISSN: 2347-2693 (Online)

Available online at: www.ijcseonline.org

Research Article

Integration of Machine Learning Algorithm into IDS-ATiC-AODV

(Improved Data Security - Avoid Time Complexity Ad-Hoc On-Demand

Distance Vector) Routing Protocol

N. Kanimozhi
1*

, S. Hari Ganesh
2

, B. Karthikeyan
3

1,2Dept. of Computer Science, H.H The Rajah’s College, Pudukkotai – 622 001. India
3Dept. of Computer Science, Bishop Heber College, Trichy – 620 017, India

*Corresponding Author: nkanimozhimphil@gmail.com

Received: 05/Mar/2024; Accepted: 06/Apr/2024; Published: 30/Apr/2024. DOI: https://doi.org/10.26438/ijcse/v12i4.86100

Abstract: The Mobile Ad-Hoc Network presents a remarkable infrastructure-free approach for information exchange between

source and destination utilizing intermediate nodes. It offers robust security features and tackles time complexity through its

routing protocols. In the author's prior research, solutions were proposed for approximately eight qualitative and quantitative

Quality of Service (QoS) metrics, along with a reduction in solution algorithm execution time. These solutions were automated

using Machine Learning (ML) algorithms, leveraging a dataset named Infra-Less KMS and an optimal algorithm, Support

Vector Machine (SVM) & Gaussian mixture model (GMM) identified in previous works. In this study, the IDS-ATiC AODV

Solution algorithm will be implemented using SVM, with a focus on evaluating prediction accuracy.

Keywords: Security and Time Complexity, QoS, SVM, GMM, Prediction Accuracy.

1. Introduction

The Mobile Ad-Hoc Network (MANET) presents various

security and time complexity challenges, such as Packet

Delivery Ratio issues, End-to-End time delays, concerns

about unreliable nodes, and potential attacks like Black Hole

and Grey Hole attacks, as well as link breaks. The IDS-ATiC

AODV routing protocol emerges as a comprehensive solution

to address these challenges. Initially, these algorithms are

implemented directly within simulators and thoroughly

evaluated, demonstrating excellent performance across

different scenarios. When the MANET experiences low

traffic, the IDS-ATiC AODV routing protocol yields

outstanding results both with and without intruders. However,

as network traffic increases, the overhead and Normalized

Routing Load (NRL) tend to escalate, leading to longer

communication times in higher traffic scenarios.

Communication time denotes the duration taken for packets to

travel from the source to the destination. The solution

algorithm aims to minimize End-to-End Time Delay (EETD).

However, an increase in Overhead and Normalized Routing

Load can lead to a rise in the normal EETD. This, in turn,

may cause a decrease in Packet Delivery Ratio (PDR).

Traditionally, drops in PDR could be attributed to issues such

as Black Holes, Unreliable Nodes, and poor bandwidth.

However, now, drops in PDR can also occur due to the

execution of the solution algorithm.

The solution algorithm comprises a collection of algorithms,

each addressing specific network issues. Whenever a

particular issue arises in the network and satisfies specific

conditions, it triggers the execution of the solution algorithm.

At such times, all algorithms may execute, or only a subset

may execute depending on the specific conditions.

Regardless, the execution may lead to increased Overhead

and Normalized Routing Load, consequently extending the

execution time.

Efforts should be made to decrease execution time.

Integrating Machine Learning (ML) with the solution

algorithm can provide a promising path forward. The author's

prior research has already paved the way for incorporating

ML algorithms. The creation of the Infra-Less KMS dataset

was specifically tailored for integrating ML techniques, while

the author's recent work identified the optimal ML algorithm,

Support Vector Machine (SVM) and Gaussian Mixture Model

(GMM), for enhancing the IDS-ATiC AODV routing

protocol.

This work tells how to utilize SVM & GMM ML algorithm

with IDS-ATiC AODV routing algorithm by the use of Infra-

Less KMS dataset.

2. Review of Literature

In their study, Jhansi Rani Kaka et al. [10] introduced the DE-

MSVM model aimed at improving the classification

https://orcid.org/0009-0003-0248-5152
https://orcid.org/0000-0003-3289-4208

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 87

performance of Alzheimer's disease. They utilized ADNI

fMRI and PET images for testing the effectiveness of

Alzheimer's classification. A normalization method was

employed to enhance the quality of the images. Feature

extraction using the AlexNet method and feature selection

through DE were conducted to identify relevant features for

classification. Subsequently, the MSVM model was applied to

the selected features to classify Alzheimer's images. This

section provides a comprehensive overview of the results

obtained from the proposed DE-MSVM approach.

Sherif Abdelfattah et al. [11] present a methodology where

the term "hospital" (H) refers to the entity owning the model,

while "patient" (P) represents the user of the model. The

proposed approach unfolds in four distinct phases. Firstly,

during the system initialization stage, the key distribution

center (KDC) computes and distributes secret keys to both H

and P. Moving on to the model encryption phase, each

parameter vector of the support vector machine (SVM) model

is encrypted by H. These encrypted parameters, along with

random numbers used for masking classification results, are

then outsourced to the cloud server (CS). In the subsequent

step of medical data encryption, P encrypts their medical data

vector, including symptoms and vital data, before transmitting

it to the server for input to the diagnosis model and

computation of the masked classification score in the medical

diagnosis phase. Finally, these masked classifications are sent

back to P for unmasking and subsequent interpretation.

Ceren Atik et al. [12] introduce a novel approach called

Support Vector Machine Chains (SVMC), which employs a

structured method where a series of models are trained with

attribute reduction at each stage. Predictions from each

learner within the chain are combined using a unique voting

mechanism known as tournament voting. This voting process

involves dividing classifier results by the tournament size and

subsequently employing a selection approach based on class

labels within groups for further processing. The approach

iteratively progresses through subsequent rounds until the end

of the tournament, where the winning class label is designated

as the final prediction.

Zhi Quan et al. [13] emphasize the significant impact Support

Vector Machines (SVM) have made in various fields such as

modern machining, protein prediction, and face detection.

They highlight the convenience of SVM's reliance solely on

support vectors for model determination, facilitating training

processes. However, they also acknowledge drawbacks,

particularly the inefficiency of existing SVM models in

training large-scale datasets for practical applications. Thus,

future SVM development may focus on enhancing

algorithmic efficiency. Furthermore, while SVM exhibits

theoretical advantages, its practical application research lags

behind. Therefore, future research is poised to concentrate on

expanding SVM's applicability in everyday life and exploring

novel application domains.

Siva Rajesh Kasa et al. [14] address the issue of subpar

solutions arising from clustering with improperly specified

Gaussian Mixture Models (GMMs). These solutions exhibit

distinct characteristics, including asymmetrical component

orientation and sizes, as well as varying frequency of

occurrence compared to spurious solutions. Through

theoretical analysis, we unveil a novel relationship between

the asymmetry of fitted components and model

misspecification. Future exploration of this correlation

promises to be intriguing.

Abdullahi Abubekar Mas'ud et al. [15] employ Gaussian

Mixture Models (GMM) for clustering and classifying

electrical trees emerging from epoxy resin insulation in this

study. Various partial discharge (PD) samples are collected at

different voltages spanning from initial to final breakdown

stages. Findings reveal that PD dynamics vary depending on

stressing voltages and tree growth levels, leading to different

breakdown times. GMM is favored over alternative methods

due to its robustness and capability to perform hard clustering

on intricate data like electrical tree patterns. Results

demonstrate GMM's effectiveness in classifying patterns from

initial to breakdown levels for breakdown times exceeding an

hour, though not for times under an hour, particularly with

samples stressed at the highest voltage of 16 kV. PD patterns

for shorter breakdown times exhibit similar clusters across

degradation stages. Cluster centers and confidence intervals

are developed to recognize PD patterns at various stages.

Nonetheless, further validation through experimentation with

different samples at varied voltages and breakdown times is

warranted. Additionally, exploring different insulating

materials such as polyethylene or cross-linked polyethylene

could further evaluate the proposed classification tool's

efficacy.

3. Support Vector Machine (SVM)

SVM stands for Support Vector Machine, a supervised

machine learning technique applicable to both classification

and regression problems.

Its primary function is to establish an optimal boundary, often

referred to as a hyperplane, between distinct classes within a

dataset. In essence, SVM undertakes intricate data

transformations based on a selected kernel function, with the

objective of maximizing the margin between data points.

• SVM Operation: In its basic form, particularly in cases of

linear separability, SVM endeavours to locate a line that

maximizes the margin between two classes within a two-

dimensional space.

• SVM Objective: The main aim of SVM is to identify a

hyperplane that best separates data points according to their

respective classes within an n-dimensional space. The data

points situated closest to this hyperplane, known as support

vectors, play a crucial role in defining the separation.

• Illustration: As depicted in the provided diagram, the

support vectors are evident as three points aligned along

scattered lines, encompassing two blue and one green support

vectors. The separation hyperplane is visually represented by

the solid red line.

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 88

Figure 1: SVM: Three point aligned along scattered lines.

3.1. Multiclass Classification Using SVM

In its most fundamental form, SVM lacks native support for

multiclass classification. To address this, multiclass problems

are typically decomposed into multiple binary classification

tasks, allowing SVM to be applied.

Various methods are commonly employed for multiclass

classification using SVM (multiclass support vector

machines), including:

 One vs One (OVO) approach

 Directed Acyclic Graph (DAG) approach

 One vs All (OVA) approach

Now, let's delve into each of these strategies individually,

examining their intricacies

3.1.1. One vs One (OVO)

This strategy breaks down our multiclass classification task

into binary subproblems. As a result, we generate binary

classifiers for each pair of classes. Final predictions are made

by combining majority voting with the confidence criterion

based on distance from the margin.

However, a notable drawback of this method is the need to

train multiple SVMs.

In the context of multi-class/multi-label problems with L

categories, let's consider the (s, t)-th classifier:

 Positive Samples: all points in class s ({ xi: s ∈ yi })

 Negative Samples: all points in class t ({ xi: t ∈ yi })

 fs, t(x): decision value of this classifier (where a larger

value of fs, t(x) indicates a higher probability for label s

over label t)

 f t, s(x) = – f s, t(x)

 Prediction: f(x) = argmax s (Σ t fs, t(x))

For example, let's envision a scenario involving three-class

classification problems: Green, Red, and Blue.

In the One-to-One approach, the objective is to find the

hyperplane that effectively separates each pair of classes

while disregarding the presence of points from the third class.

For instance, the Red-Blue line focuses solely on maximizing

the distinction between blue and red points, without factoring

in the presence of green points

Figure 2: SVM-Three-Class Classification

Figure 3: Multiple classification

3.1.2. One vs All (OVA)

In this method, for an N-class problem, we train N SVMs:

SVM number -1 learns “class_output = 1” versus

“class_output ≠ 1”

SVM number -2 learns “class_output = 2” versus

“class_output ≠ 2”

...

...

SVM number -N learns “class_output = N” versus

“class_output ≠ N”

To predict the output for new input data, we predict with each

of the trained SVMs and then determine which one yields the

prediction farthest into the positive region, serving as a

confidence criterion for a specific SVM.

3.1.3. Challenges with N SVM’s

However, training these N SVMs poses challenges:

High Computational Complexity: Implementing the One vs

All (OVA) strategy requires processing more training points,

leading to increased computational demands.

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 89

Imbalanced Data: For instance, in an MNIST dataset with 10

classes (0 to 9) and 1000 points per class, one SVM may be

trained on 9000 points while another has only 1000, resulting

in an imbalance.

To mitigate this issue:

 Utilize the 3-sigma rule of the normal distribution to fit data

and subsample accordingly, maintaining class distribution.

 Randomly select data points from the majority class.

 Employ popular subsampling techniques like SMOTE.

For multi-class/multi-label problems with L categories:

For the t-th classifier:

 Positive Samples: all points in class t ({ xi: t ∈ yi })

 Negative Samples: all points not in class t ({ xi: t ∉ yi })

 ft(x): the decision value for the t-th classifier (where a

larger value of ft indicates a higher probability that x is in

class t)

 Prediction: f(x) = argmax t ft(x)

Figure 4: One vs All approach

In the One vs All approach, a hyperplane is sought to separate

the classes, considering all points and dividing them into two

groups: one for the points of the class under analysis and

another for all other points

A single SVM performs binary classification, distinguishing

between two classes as follows:

• The One vs All approach utilizes L SVMs for classification.

• The One vs One approach employs L(L-1)/2 SVMs for

classification

4. Gaussian Mixture Model (GMM)

The Gaussian mixture model (GMM) represents a set of

distributions over vectors with real values in

ℝ𝑛. The definition of the GMM is as follows: Initially, we

posit the existence of K Gaussian distributions. Next, to

generate a sample𝒙 ∈ ℝ𝑛, we begin by choosing one of these

K Gaussians based on a Categorical distribution

𝑍 ∼ Cat(𝛼1, … , 𝛼𝐾) ……01

Here, Z∈{1,2,…,K} indicates which Gaussian to select (for

instance, if Z=2, we pick the 2nd Gaussian), and α_k

represents the probability of selecting the k th Gaussian. Once

Z=z, we then sample X from that z th Gaussian. In other

words,

𝑋 ∼ 𝑁(𝜇𝑧, Σ𝑧) ……02

Here, μ_z denotes the mean of the z th Gaussian, and Σ_z

represents its covariance matrix.

This model is represented by the following graphical

structure:

Figure 5: Gaussian Mixture Model

Each of the K Gaussian distributions possesses its distinct set

of parameters, including a mean vector and a covariance

matrix.

Additionally, the probabilities α_1,…,α_k associated with

selecting the Gaussians are also considered as parameters of

the model. We will refer to this comprehensive collection of

model parameters as

Θ = {𝝁1, … , 𝝁𝐾 , 𝚺1, … , 𝚺𝐾 , 𝛼1, … , 𝛼𝐾} ……03

In scenarios where GMMs are employed, such as in the

context of data clustering (which will be further explored), Z

is commonly unobserved. Consequently, our attention is

directed towards the marginal distribution of X, characterized

by its density function:

𝑝(𝒙; Θ)∶= ∑  

𝐾

𝑘=1

 𝑃(𝑍 = 𝑘; Θ)𝑝(𝒙 ∣ 𝑍 = 𝑘; Θ)

 = ∑  

𝐾

𝑘=1

 𝛼𝑘𝜙(𝒙; 𝝁𝑘 , 𝚺𝑘)

……04

where ϕ represents the probability density function of the

multivariate Gaussian distribution:

𝜙(𝒙; 𝝁, 𝚺): =
1

(2𝜋)
𝑛
2det (𝚺)

1
2

exp [−
1

2
(𝒙

− 𝝁)𝑇𝚺−1(𝒙 − 𝝁)]

……05

Below is an illustrative density function for a two-

dimensional GMM featuring three Gaussians (i.e., K=3)

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 90

Figure 6: Two-dimensional GMM

4.1. A framework for clustering data

Let's consider a dataset containing points𝒙1, 𝒙2, … , 𝒙𝑛 ∈ ℝ𝑛,

and our objective is to identify clusters among these data

points where points within a cluster exhibit greater similarity

to each other compared to points outside their cluster. GMMs

offer a framework for uncovering such clusters.

To cluster the data, we start with a strong assumption: that our

data points were generated from a GMM with K Gaussians

(where K represents the assumed number of clusters).

However, we lack knowledge about the GMM's parameters,

including the means and covariances of each Gaussian, as

well as the assignment of each data point to a specific

Gaussian (represented by the random variables 𝑍1, … , 𝑍𝑛).

This scenario is depicted in the illustration below. On the left

side, we have an ideal scenario where we know the

parameters of the GMM and have samples 𝒙1, … , 𝒙𝑛generated

from that model. Importantly, we also have information about

which Gaussian generated each data point - denoted as

𝑧1, … , 𝑧𝑛 (these are indicated by the colors of the data points).

On the right side, we are only provided with 𝒙1, … , 𝒙𝑛,

lacking knowledge about the model parameters Θ and the

assignment of data points to Gaussians, 𝑧1, … , 𝑧𝑛. In other

words, 𝒙1, … , 𝒙𝑛constitutes the observed data, while

𝑧1, … , 𝑧𝑛represents the latent data.

Figure 7: Idealized scenario of GMM

Only X is observable (Realistic scenario)

Figure 8: Realistic scenario of GMM

To conduct clustering on 𝒙1, … , 𝒙𝑛, we can proceed with the

following steps. Initially, we must estimate the values for Θ.

This estimation process will be extensively discussed in this

blog post, but for now, let's assume we have an estimate

denoted as

Θ̂: = {𝝁1ˆ , … , 𝝁�̂� , 𝚺1̂, … , 𝚺�̂� , 𝛼1̂, … , 𝛼�̂�}
……06

With this estimate in hand, we can allocate 𝒙𝑖to the Gaussian

(or cluster) that is deemed most probable to have generated

𝒙𝑖:

arg max
𝑘∈{1,…,𝐾}

 𝑃(𝑍𝑖 = 𝑘 ∣ 𝒙𝑖; Θ̂) ……07

Applying Bayes' rule, we obtain

𝑃(𝑍𝑖 = 𝑘 ∣ 𝒙𝑖; Θ̂) =
𝑝(𝒙𝑖 ∣ 𝑍𝑖 = 𝑘; Θ̂)𝑃(𝑍𝑖 = 𝑘; Θ̂)

∑  𝐾
ℎ=1  𝑝(𝒙𝑖 ∣ 𝑍𝑖 = ℎ; Θ̂)𝑃(𝑍𝑖 = ℎ; Θ̂)

 =
𝜙(𝒙𝑖 ∣ �̂�𝑘 , �̂�𝑘)�̂�𝑘

∑  𝐾
ℎ=1  𝜙(𝒙𝑖 ∣ �̂�ℎ , �̂�ℎ)�̂�ℎ

 ……08

This process is illustrated in the figure below. On the left-

hand side, we represent our estimation for Θ. On the right-

hand side, we allocate each point to the Gaussian that is

determined to be the most probable origin for that point

Figure 9: Identification of Cluster

Notice that we have identified three clusters in the data

corresponding to the three Gaussians.

Now, let's return to the objective of estimating values for Θ.

This can be pursued using the principle of maximum

likelihood:

Θ̂: = arg max
Θ

 ∏  

𝑛

𝑖=1

𝑝(𝒙𝑖; Θ) ……09

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 91

How can we address this optimization problem? It happens

that the EM algorithm offers a straightforward approach, as

we'll explore in detail later in this post

4.2. GMM for Cluster

When using GMMs for clustering, there are several key

considerations to bear in mind. Firstly, GMMs necessitate the

user to specify K, which represents the number of Gaussians

posited to have generated the data.

This K value determines the number of clusters sought by the

algorithm. If K is set too low, the maximum-likelihood

estimation of the model may result in grouping Gaussians that

encompass multiple 'true' clusters. Conversely, if K is set too

high, some 'true' clusters might be fragmented into multiple

smaller clusters.

For instance, consider the dataset below, which was generated

with three Gaussians (left), but we are fitting a GMM with

two Gaussians (middle) and five Gaussians (right):

Figure 9: Colour based identification of Cluster

On the left, each point is coloured based on the Gaussian from

which it was sampled. It's evident that when K is too small

(middle), two of the true clusters are merged into a single

cluster. Similarly, when K is too large (right), some of the

true clusters are fragmented into multiple smaller clusters.

Figure 10: Identifying cluster shape

Another crucial aspect is that GMMs excel at identifying

clusters shaped like 'blobs'—sets of data points forming

ellipsoid-like clusters. However, when the data exhibits more

intricate structures, GMMs may not yield clusters that align

with intuitive interpretations. For instance, consider a dataset

comprising two concentric rings. A GMM seeking two 'blob-

like' clusters will struggle to separate the inner ring from the

outer ring. As depicted below, the GMM divides each ring in

half and assigns each half to a cluster:

4.3. Estimating maximum likelihood for GMMs using the

EM algorithm

The EM algorithm is a straightforward option for conducting

maximum likelihood estimation of GMM parameters due to

its simplicity in implementation. For a comprehensive

examination of the EM algorithm, please refer to my earlier

blog post.

The EM algorithm necessitates iteratively alternating between

an E-step and an M-step until the parameters converge

4.3.1. E-Step

In the E-step, we need to define the Q-function. Let's denote a

given iteration of the algorithm as t. The Q-function for the t

th iteration is formulated as follows:

𝑄𝑡(Θ): = ∑  

𝑛

𝑖=1

∑  

𝐾

𝑘=1

𝛾𝑡,𝑖,𝑘log [𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘, 𝚺𝑘)] ……10

Where

𝛾𝑡,𝑖,𝑘: =
𝛼𝑡,𝑘𝜙(𝒙𝑖; 𝝁𝑡,𝑘, 𝚺𝑡,𝑘)

∑  𝐾
ℎ=1  𝛼𝑡,ℎ𝜙(𝒙𝑖; 𝝁𝑡,ℎ, 𝚺𝑡,ℎ)

 ……11

and 𝛼𝑡,𝑘 , 𝝁𝑡,𝑘, and 𝚺𝑡,𝑘 are the 𝑡 th estimates of 𝛼𝑘, 𝝁𝑘, and 𝚺𝑘

respectively.

It's worth mentioning that the primary computation required

at this step involves calculating the 𝛾𝑡,𝑖,𝑙variables. As

demonstrated in the derivation, these variables indicate the

likelihood that each data point was sampled from each

Gaussian, as estimated using the parameter set Θ𝑡. In essence,

𝛾𝑡,𝑖,𝑙signifies the probability that data point 𝑖 was generated by

the 𝑘 th Gaussian, as estimated at the 𝑡 th iteration of the

algorithm.

4.3.2. M-Step

During the M-step, our objective is to determine Θ that

maximizes Q_t (Θ). In other words, we need to calculate the

following:

Θ𝑡+1: = arg max
Θ

 𝑄𝑡(Θ) ……12

The solution to this optimization problem is expressed as :

∀𝑘, 𝛼𝑡+1,𝑘∶=
1

𝑛
∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘

∀𝑘, 𝝁𝑡+1,𝑘∶=
1

∑  𝑛
𝑖=1   𝛾𝑡,𝑖,𝑘

∑  

𝑛

𝑖=1

  𝛾𝑡,𝑖,𝑘𝒙𝑖

∀𝑘, 𝚺𝑡+1,𝑘∶=
1

∑  𝑛
𝑖=1   𝛾𝑡,𝑖,𝑘

∑  

𝑛

𝑖=1

  𝛾𝑡,𝑖,𝑘(𝒙𝑖 − 𝝁𝑡,𝑘)(𝒙𝑖 − 𝝁𝑡,𝑘)
𝑇

 13

4.3.3. Hot Steps

The following code snippet describes the EM algorithm:

While

(𝒙1, … , 𝒙𝑛; Θ𝑡) − 𝑝(𝒙1, … , 𝒙𝑛; Θ𝑡−1) < 𝜖 14

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 92

∀𝑘, ∀𝑖, 𝛾𝑡,𝑖,𝑘 ←
𝛼𝑡,𝑘𝜙(𝒙𝑖; 𝝁𝑡,𝑘 , 𝚺𝑡,𝑘)

∑  𝐾
ℎ=1  𝛼𝑡,ℎ𝜙(𝒙𝑖; 𝝁𝑡,ℎ, 𝚺𝑡,ℎ)

∀𝑘, 𝛼𝑡+1,𝑘 ←
1

𝑛
∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘

∀𝑘, 𝝁𝑡+1,𝑘 ←
1

∑  𝑛
𝑖=1   𝛾𝑡,𝑖,𝑘

∑  

𝑛

𝑖=1

  𝛾𝑡,𝑖,𝑘𝒙𝑖

∀𝑘, 𝚺𝑡+1,𝑘 ←
1

∑  𝑛
𝑖=1  𝛾𝑡,𝑖,𝑘

∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘(𝒙𝑖 − 𝝁𝑡,𝑘)(𝒙𝑖 − 𝝁𝑡,𝑘)
𝑇

𝑡 ← 𝑡 + 1

ϵ is a parameter provided by the user that governs

convergence criteria. Additionally, it's important to note that

the initial parameters Θ0are not critical and can be arbitrarily

set. Since the EM algorithm converges to a local maximum,

it's often beneficial to run EM multiple times with different

initial values of Θ0and select the solution that maximizes the

likelihood function.

4.3.4. The EM algorithm in operation

Figure 11: EM algorithm for GMM

In the illustration above and below, we showcase the EM

algorithm for GMMs in progress. As the number of iterations

increases, the means and covariances of each Gaussian

gradually converge, aligning the Gaussians with the three

clusters in the data:

Figure 11 Gaussians with the three clusters

4.3.5. Developing the EM algorithm for Gaussian

Mixture Models

Derivation of the E-step

Here, we establish the Q-function at the 𝑡
th

 iteration. Let

X:={ 𝒙1, … , 𝒙𝑛} denote the set of observed data (i.e., the data

points), and Z:={ 𝑧1, … , 𝑧𝑛} represent the collection of latent

data (i.e., indicating which Gaussian generated each data

point). As a reminder, the Q-function is defined as:

𝑄𝑡(Θ): = 𝐸𝑍∣𝑋;Θ𝑡
[log 𝑝(𝑋, 𝑍; Θ) ……15

Obtaining the Q-function involves deriving an analytical

expression for this expectation, enabling its implementation in

a computer program. For GMMs, this derivation is as follows

𝑄𝑡(Θ)∶= 𝐸𝑍∣𝑋;Θ𝑡
[log 𝑝(𝑋, 𝑍; Θ)]

 = ∑  

𝑛

𝑖=1

 𝐸𝑧𝑖∣𝒙𝑖;Θ𝑡
[log 𝑝(𝒙𝑖 , 𝑧𝑖 ; Θ)] by the linearity of expectation

 = ∑  

𝑛

𝑖=1

  ∑  

𝐾

𝑘=1

 𝑃(𝑧𝑖 = 𝑘 ∣ 𝒙𝑖 ; Θ𝑡)log 𝑝(𝒙𝑖 , 𝑧𝑖; Θ)

 = ∑  

𝑛

𝑖=1

  ∑  

𝐾

𝑘=1

 
𝑃(𝒙𝑖 ∣ 𝑧𝑖 = 𝑘; Θ𝑡)𝑃(𝑧𝑖 = 𝑘; Θ𝑡)

∑  𝐾
ℎ=1  𝑃(𝒙𝑖 ∣ 𝑧𝑖 = ℎ; Θ𝑡)𝑃(𝑧𝑖 = ℎ; Θ𝑡)

log 𝑝(𝒙𝑖 , 𝑧𝑖 ; Θ)

 = ∑  

𝑛

𝑖=1

  ∑  

𝐾

𝑘=1

 
𝛼𝑡,𝑘𝜙(𝒙𝑖; 𝝁𝑡,𝑘 , 𝚺𝑡,𝑘)

∑  𝐾
ℎ=1  𝛼𝑡,ℎ𝜙(𝒙𝑖; 𝝁𝑡,ℎ, 𝚺𝑡,ℎ)

log 𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘 , 𝚺𝑘)

 = ∑  

𝑛

𝑖=1

  ∑  

𝐾

𝑘=1

  𝛾𝑡,𝑖,𝑘log 𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘 , 𝚺𝑘)

……

16

where we let

𝛾𝑡,𝑖,𝑘: =
𝛼𝑡,𝑘𝜙(𝒙𝑖; 𝝁𝑡,𝑘, 𝚺𝑡,𝑘)

∑  𝐾
ℎ=1  𝛼𝑡,ℎ𝜙(𝒙𝑖; 𝝁𝑡,ℎ, 𝚺𝑡,ℎ)

 ……17

4.3.6. Developing the M-step

In the M-step, the objective is to determine Θ𝑡+1that

maximizes the Q-function.

It's important to note that the 𝛼1, … , 𝛼𝑘represent the

probabilities of a given point being sampled from each

Gaussian, and consequently, these probabilities must sum to

one. Therefore, when optimizing the Q-function with respect

to these parameters, it's imperative to do so under the

constraint that they sum to one. In other words, we need to

solve the following equation:

Θ𝑡+1: = arg max
Θ

 𝑄𝑡(Θ) ……18

with the condition that

∑  

𝐾

𝑘=1

𝛼𝑘 = 1 ……19

Due to the presence of the equality constraint and the

continuity of both the objective and the constraint, this

optimization problem can be addressed using Lagrange

multipliers. Initially, we construct the Lagrangian as follows:

𝐿(Θ, 𝜆): = ∑𝑖=1
𝑛  ∑𝑘=1

𝐾  𝛾𝑡,𝑖,𝑘log 𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘, 𝚺𝑘)

+ 𝜆(∑𝑘=1
𝐾  𝛼𝑘 − 1)

……20

Now, we aim to find Θ that satisfies the condition where the

derivative of the Lagrangian equals zero.

We begin with 𝛼1, … , 𝛼𝐾. For a particular k,
∂𝐿(Θ, 𝜆)

∂𝛼𝑘

=
1

𝛼𝑘

∑  

𝑖=1

𝛾𝑡,𝑖,𝑘 + 𝜆 ……21

By setting it to zero and solving for α_k, we obtain:

0 =
1

𝛼𝑘

∑  

𝑖=1

 𝛾𝑡,𝑖,𝑘 + 𝜆

⟹ 𝛼𝑘 = −
1

𝜆
∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘

 ……22

Substituting this into the constraint ∑𝑘=1
𝐾  𝛼𝑘 = 1, we can

determine λ by solving

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 93

∑  

𝐾

𝑘=1

  −
1

𝜆
∑  

𝑛

𝑖=1

  𝛾𝑡,𝑖,𝑘 = 1

⟹ 𝜆 = − ∑  

𝑛

𝑖=1

 ∑  

𝐾

𝑘=1

 𝛾𝑡,𝑖,𝑘

⟹ 𝜆 = −𝑛 because ∑  

𝐾

𝑘=1

 𝛾𝑡,𝑖,𝑘 = 1

 …23

Lastly, substituting λ back into the equation that equates the

derivative of the Lagrangian to zero, we can calculate the

ultimate value of 𝛼𝑘:

0 =
1

𝛼𝑘

∑  

𝑖=1

 𝛾𝑡,𝑖,𝑘 + 𝜆

⟹ 0 =
1

𝛼𝑘

∑  

𝑖=1

 𝛾𝑡,𝑖,𝑘 − 𝑛

⟹ 𝛼𝑘 =
1

𝑛
∑  

𝑖=1

  𝛾𝑡,𝑖,𝑘

 …24

And with that, we have determined the 𝛼1, … , 𝛼𝑘parameters

that maximize the Q-function.

Next, we proceed to the Gaussian means. Initially, we

calculate the derivative of the Lagrangian with respect to

𝝁𝑘for a specific 𝑘:

∂𝐿(Θ, 𝜆)

∂𝝁𝑘

∶= ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘

∂

∂𝝁𝑘

log 𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘 , 𝚺𝑘)

 = ∑  

𝑛

𝑖=1

 
𝛾𝑡,𝑖,𝑘

𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘, 𝚺𝑘)

∂

∂𝝁𝑘

𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘 , 𝚺𝑘)

 = ∑  

𝑛

𝑖=1

  𝛾𝑡,𝑖,𝑘[−2𝚺𝑘
−1(𝒙𝑖 − 𝝁𝑘)]

 25

The final step of this derivation is based on the fact that
∂

∂𝑠
(𝒙 − 𝒔)𝑇𝑾(𝒙 − 𝒔) = −2𝑾−1(𝒙 − 𝒔) …….26

Now, by equating the derivative of the Lagrangian with

respect to the mean vector to the zero vector, we can

determine 𝝁𝑘:

𝟎 = ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘[−2𝚺𝑘
−1(𝒙𝑖 − 𝝁𝑘)]

⟹ 𝟎 = 𝚺𝑘
−1 ∑  

𝑛

𝑖=1

  𝛾𝑡,𝑖,𝑘(𝒙𝑖 − 𝝁𝑘)

⟹ 𝚺𝑘𝟎 = 𝚺𝑘𝚺𝑘
−1 ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘(𝒙𝑖 − 𝝁𝑘)

⟹ 𝟎 = ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘(𝒙𝑖 − 𝝁𝑘)

⟹ 𝝁𝑘 =
1

∑  𝑛
𝑖=1   𝛾𝑡,𝑖,𝑘

∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘𝒙𝑖

 ……27

And now, we have found the Gaussian means that maximize

the Q-function.

Lastly, we address the determination of the covariance

matrices that maximize the Q-function. Initially, we calculate

the gradient with respect to the covariance matrix 𝚺𝑘for a

specific 𝑘:
∂𝐿(Θ, 𝜆)

∂𝚺𝑘

∶= ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘

∂

∂𝚺𝑘

log 𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘, 𝚺𝑘)

 = ∑  

𝑛

𝑖=1

 
𝛾𝑡,𝑖,𝑘

𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘, 𝚺𝑘)

∂

∂𝚺𝑘

𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘, 𝚺𝑘)

 = ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘 [−
1

2

∂

∂𝚺𝑘

log det (𝚺𝒌) −
1

2

∂

∂𝚺𝑘

(𝒙𝑖 − 𝝁𝑘)𝑇𝚺𝑘
−1(𝒙𝑖 − 𝝁𝑘)]

 = ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘 −
1

2
𝚺𝑘

−1 − 𝛾𝑡,𝑖,𝑘

1

2

∂

∂𝚺𝑘

(𝒙𝑖 − 𝝁𝑘)𝑇𝚺𝑘
−1(𝒙𝑖 − 𝝁𝑘) See Note 1 below

 = −
1

2
∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘𝚺𝑘
−1 − 𝛾𝑡,𝑖,𝑘𝚺𝑘

−1(𝒙𝑖 − 𝝁𝑖)(𝒙𝑖 − 𝝁𝑖)
𝑇𝚺𝑘

−1 See Note 2 below

 = −
1

2
(∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘) 𝚺𝑘
−1 − 𝚺𝑘

−1 (∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘(𝒙𝑖 − 𝝁𝑖)(𝒙𝑖 − 𝝁𝑖)
𝑇) 𝚺𝑘

−1

 28

5. IDS-ATiC AODV routing algorithm

The diagram Figure 12 illustrates the IDS-ATiC algorithms

and their respective sub-algorithms. This algorithm is divided

into two main categories: IDS and ATiC. IDS focuses

exclusively on qualitative issues or active problems related to

data, specifically Data Change (DC) and Data Theft (DT).

These issues are addressed through five sub-algorithms:

 IBD (Irregularity Behavior Detection): This algorithm

identifies trusted nodes by detecting anomalies in a system

or network based on trust relationships among its

components.

 LinBr (Link Break): It prevents link breaks by creating

optimal routes with trusted nodes.

 BlaHA (Black Hole Avoidance) and GrHoA (Grey Hole

Avoidance): These algorithms deal with attacks where

trusted nodes behave as untrusted nodes, such as Black

Hole and Grey Hole attacks, respectively. BlaHA checks

each reply from neighboring nodes to detect anomalies,

while GrHoA focuses on mitigating Grey Hole attacks.

 UnB (Unbelievable Node Avoidance): This algorithm

identifies and avoids unreliable nodes by assessing the ratio

of received to sent packets, preferring nodes with ratios

closer to one.

ATiC focuses on passive quantitative issues and aims to

reduce time-related complexity through its five sub-

algorithms:

 IGWO (Improved Grey Wolf Optimization Based): This

algorithm detects malicious nodes by simulating the social

dynamics of a grey wolf pack.

 MulP (Multiple Path towards Destination): It finds multiple

routes between the source and destination to improve

efficiency.

 PktSiR (Packet Size Regulator): This algorithm adjusts

packet size according to the available bandwidth, increasing

packet size during low traffic and decreasing it during high

traffic.

 MulPKt (Multiple Packet towards Destination): It sends

multiple packets simultaneously using the optimal paths

determined by MulP.

 MulOR (Multiple Optimal Route between Tx and Rx): This

algorithm finds multiple optimal routes between the

transmitter and receiver, considering factors like the

number of hops and available bandwidth, and then sorts

them based on cost before utilizing them for packet

transmission.

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 94

Figure 12 : Improved Data Security – Avoid Time Complexity (IDS-

ATiC)

6. Infra-Less KMS dataset

The Infra-Less KMS dataset is a novel compilation tailored

for this particular research endeavor. Its attributes are

amalgamated from the KDDCup99 and

Dataset_Unicauce_V2_87atts datasets, with several attributes

being specifically introduced for this study.

Comprising 31 features, only 7 are shared, while the

remaining 24 are uniquely utilized to forecast ten distinct

types of attacks, namely:

 DoS & DDoS

 Data Change

 Data Theft

 Block Hole

 EETD

 PDR

 (BU) Bandwidth Utilization

 NC (Network Congestion)

 UN (Unbelievable Node)

This dataset was curated from the OmNetpp simulator and the

breakdown of its data is detailed in the table below.

Table 1: Display the number of dat allocated for each attack

Total Number of Rows 2,11,010.00

DoS (Denial of Service) &

DDoS (Distributed Denial of Service)
32,021.00

DC (Data Change) 10,165.00

DT (Data Theft) 12,010.00

BH (Block Hole) 35,202.00

EETD (End to End Time Delay) 50,151.00

PDR (Packet Delivery Ratio) 42,435.00

BU (Bandwidth Utilization) 9,682.00

NC(Network Congestion) 9,669.00

UN(Unbelievable Node) 9,675.00

Thus, this newly crafted dataset contains ample data for each

specified attack outlined in the IDS-ATiC algorithm.

7. Proposed Work

IDS-ATiC is an algorithm that has already been integrated

with AODV. In this study, IDS-ATiC is extended by

incorporating either Support Vector Machine (SVM) or

Gaussian Mixture Model (GMM) as the underlying machine

learning (ML) algorithm.

Previous research by the author evaluated ML algorithms and

found SVM and GMM to be a suitable choice for

implementing IDS-ATiC within the AODV framework, albeit

being a supervised learning algorithm requiring labelled

attributes. In contrast, unsupervised learning algorithms like

GMM can effectively utilize unlabelled attributes. Hence, in

this study, both SVM (supervised) and GMM (unsupervised)

are being implemented.

The proposed work involves the creation of two separate

models: one utilizing SVM and the other utilizing GMM.

Figure 13: Visualization of the construction process of the SVM

Data Collection
from OmNetpp

Infra-Less KMS
Dataset

Pre-Processing

Feature Selection

SVM / GMM
Classifier

Solution
Algorithm
Selection

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 95

This proposed study aims to identify the most effective

machine learning algorithm along with its Problem Finding

Time (PFT). The table below illustrates the required

combinations of the IDS-ATiC algorithm to address specific

scenarios. In cases where a machine learning algorithm is not

available, any rule-based problems will be identified. Initial

algorithms will then be executed to pinpoint the exact

problem scenario. Subsequently, the precise combination of

algorithms will be employed to deliver a solution for that

particular situation

7.1. Algorithm execution sequence

If the rule-based problem identification is performed during

this period, the combined time for situation identification and

algorithm execution will range from 119ms to 101ms. The

minimum time required for a solution is 101ms, while the

maximum time is 119ms. This variance occurs because all

initial algorithms must be executed to identify the appropriate

situation before the corresponding algorithms can be run,

resulting in this duration.

Table 2: Algorithm Execution Sequence

Algorithm No. Initial Algorithm Algorithm Sequence

1

IBD

MulP

MulOR

MulPkt

 Sequence No. 1 2 3 4

2

LinBr

UnB

MulP

MulOR

PktSiR

MulPkt

Sequence No. 1 2 3 4 5 6

2

BlaHA & GrHoA

IGWO

MulP

MulOR

MulPkt

 Sequence No. 1 2 3 4 5

4

UnB

MulP

MulOR

MulPkt

 Sequence No. 1 2 3 4

5

IGWO

MulP

MulOR

MulPkt

 Sequence No. 1 2 3

6

MulP

MulOR

MulPkt

 Sequence No. 1 2 3

7

MulOR

MulPkt

 Sequence No. 1 2

If a machine learning algorithm is employed and accurately

identifies a specific situation, the BlaHA and GrHoA

algorithms will require a longer execution time of 64ms each,

while the MulOR algorithm will require less execution time,

specifically 11ms. These details are derived solely from the

author's prior research.

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 96

Data collection presents a formidable challenge due to the

complexity of identifying and selecting attributes that possess

the requisite characteristics for identifying specific problem

situations. The author has undertaken this task, deriving

certain attributes from existing datasets and creating new ones

as required by the algorithms. Detailed explanations regarding

the dataset can be found in the dataset section.

7.2. SVM Sample code

from sklearn.svm import SVC

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

Assuming you have your dataset loaded into X

(features) and y (target labels)

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X,

y, test_size=0.2, random_state=42)

Initialize the SVM classifier

svm_classifier = SVC(kernel='rbf', C=1.0,

gamma='scale', random_state=42)

Train the classifier on the training data

svm_classifier.fit(X_train, y_train)

Make predictions on the testing data

y_pred = svm_classifier.predict(X_test)

Evaluate the performance of the classifier

print(classification_report(y_test, y_pred))

7.3. GMM Sample code

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X,

y, test_size=0.2, random_state=42)

Fit a separate GMM for each class

gmms = {}

for class_label in set(y_train):

 X_class = X_train[y_train == class_label]

 gmm = GaussianMixture(n_components=5,

covariance_type='full') # Example hyperparameters

 gmm.fit(X_class)

 gmms[class_label] = gmm

Calculate class probabilities for each data point in

the testing set

class_probs = {}

for class_label, gmm in gmms.items():

 class_probs[class_label] =

gmm.score_samples(X_test)

Assign class labels based on the estimated class

probabilities

y_pred = [max(class_probs, key=lambda k:

class_probs[k][i]) for i in range(len(X_test))]

Evaluate the performance of the GMM-based

classifier

print(classification_report(y_test, y_pred))

8. Simulation

OMNeT++ is a versatile, customizable, object-oriented C++

simulation library and framework designed primarily for

constructing network simulators. The term 'network'

encompasses various types, including wired and wireless

communication networks, on-chip networks, and queueing

networks. Specific functionalities tailored to domains such as

sensor networks, wireless ad-hoc networks, Internet protocols,

performance modelling, and photonic networks are provided

by independent model frameworks. OMNeT++ features an

IDE based on Eclipse, a graphical runtime environment, and a

range of additional tools. Extensions are available for real-

time simulation, network emulation, database integration,

SystemC integration, and various other capabilities.

8.1. Simulation Parameters

Table 3: Simulation Parameter

Parameters Values

Network Size 1000 X 1000

Number of Nodes 0-500

Max Speed/ Mobility 10 m/s

Pause Time 0-100s

Traffic Model CBR, VBR

Radio Transmission Range 250m

Routing Protocol AODV, IDS-ATiC AODV

Simulation Time 600s

Note: This simulation parameters were used to create Inra-Less KMS

Dataset

9. Methodology

9.1. Accuracy

Accuracy is calculated by dividing the number of correct

predictions by the total number of predictions across all

classes. In binary classification, it can be expressed as:

Accuracy (ACC) = (TP + TN) / (TP + TN + FP + FN)

9.2. Confusion Matrix and Accuracy

This step is commonly employed in classification

methodologies. Here, we assess the accuracy of the trained

model and visualize the confusion matrix.

The confusion matrix is a structured table utilized to present

the count of accurate and erroneous predictions made by a

classification model when the actual values of the test set are

available. It follows a specific format.

Figure 14: Confusion Matrix for Accuracy

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 97

The True values represent the count of accurate predictions.

Based on the provided confusion matrix, we deduce that out

of 100 test set instances, 90 were accurately classified while

10 were misclassified. Thus, the accuracy of the classification

is determined to be 90%.

10. Result and Discussion

The outcomes encompass the prediction accuracy comparison

between SVM and GMM, the algorithm execution time

(AET) based on predefined rules, the time taken to identify

problems (PFT) with SVM and GMM. Lastly, it incorporates

the total execution time (TET) for both SVM and GMM.

Table 4: Prediction Accuracy (PA) between SVM and GMM

S. No. Attacks
Accuracy (%)

SVM GMM

1 PDR 92 81

2 EETD 78 74

3 DoS 85 77

4 DDoS 85 77

5 DC 71 67

6 DT 94 86

7 BH 83 76

8 BU 83 77

9 NC 80 73

10 UN 86 79

Table 4 illustrates the Prediction Accuracy (PA) comparison

between SVM and GMM. SVM exhibits lower PA compared

to GMM. Both algorithms operate within the realm of

multiple class classification. Notably, higher PA correlates

with better results in terms of Time Complexity and Security

Complexity. The PA is computed based on 31 attributes and

2,11,010 samples

In Table 5, each row presents a set of algorithms employed

for execution under specific circumstances. The table displays

the time required for each algorithm to run within the given

simulation parameters and defined scenarios. The study

encompasses two distinct scenarios: one without intruders and

the other with 15% intrusion. The computation of algorithm

execution time is conducted within the context of the latter

scenario.

Following table showing Algorithm Execution Time (AET) of each algorithms sequence
Table 5: Algorithm Execution Time (AET)

Tot. Exec. Time Initial Algorithm Algorithm Sequence

36ms

IBD

MulP

MulOR

MulPkt

 Execution Time 20ms 5ms 10ms 1ms

51ms

LinBr

UnB

MulP

MulOR

PktSiR

MulPkt

Execution Time 15ms 2ms 5ms 10ms 18ms 1ms

64ms

BlaHA & GrHoA

IGWO

MulP

MulOR

MulPkt

 Execution Time 25ms 23ms 5ms 10ms 1ms

18ms

UnB

MulP

MulOR

MulPkt

 Execution Time 2ms 5ms 10ms 1ms

39ms

IGWO

MulP

MulOR

MulPkt

 Execution Time 23ms 5ms 10ms 1ms

16ms MulP MulOR MulPkt

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 98

Execution Time 5ms 10ms 1ms

11

MulOR

MulPkt

 Execution Time 10ms 1ms

According to these findings, the highest execution time

recorded is 64ms, observed with the BlaHA and GrHoA

algorithms. Conversely, the lowest execution time among the

algorithms is 11ms.

Problem Finding Time (PFT)

Table 6: Problem Finding Time (PFT) between SVM and GMM

S. No. Attacks
Time (ms)

SVM GMM

1 PDR 1.4 1.62

2 EETD 1.73 1.59

3 DoS 3.26 4.01

4 DDoS 3.72 4.44

5 DC 6.39 5.69

6 DT 6.13 5.53

7 BH 6.02 5.76

8 BU 1.58 2.09

9 NC 1.16 1.69

10 UN 1.05 1.18

Figure 15: Comparison of Problem Finding Time (PFT)

The identification of Problem Finding Time is essentially a

forecasting task facilitated by Machine Learning algorithms.

This study employed two algorithms, namely SVM and

GMM, operating on the Infra-Less KMS dataset comprising

2,11,010 samples and 31 attributes. The findings indicate that

GMM demonstrates a shorter qualitative Problem Finding

Time, suggesting it requires less time to predict qualitative

issues compared to SVM.

While GMM excels in this aspect, SVM exhibits a generally

satisfactory performance in Problem Finding Time. The graph

below illustrates the comparison of PFT durations between

SVM and GMM. Ultimately, SVM demonstrates a

moderately good overall performance in Problem Finding

Time.

Total Execution Time (TET)

Table 7: Total Execution Time (TET) with SVM

S. No. Attacks
Time (ms)

PFT AET TET

1 PDR 1.4 39 40.4

2 EETD 1.73 51 52.73

3 DoS 3.26 64 67.26

4 DDoS 3.72 69.23 70.39

5 DC 6.39 64 70.39

6 DT 6.13 64 70.13

7 BH 6.02 64 70.02

8 BU 1.58 29 30.58

9 NC 1.16 29 30.16

10 UN 1.05 39 40.05

Table 7 presents the Total Execution Time (TET) of the

SVM. TET is computed by adding two durations: Problem

Finding Time (PFT) and Algorithm Execution time. PFT is

solely determined by the ML algorithm used. According to

the findings, both algorithms yield identical TET values

except in the case of DDoS, where SVM demonstrates

superior TET performance.

Figure 16 illustrates the comparison of Total Execution Times

(TETs) between SVM and GMM. The results suggest that

both algorithms are suitable for implementation in IDS-ATiC

AODV. Each algorithm is deemed appropriate for specific

situations, contributing to a reduction in prediction time.

0

2

4

6

8

Ti
m

e
(m

s)

Algorithms

Time (ms) Time (ms)

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 99

Figure 16: Comparison of Total Execution Time (TET) between SVM and GMM

Table 8: Total Execution Time (TET) with GMM

S. No. Attacks
Time (ms)

PFT AET TET

1 PDR 1.62 39 40.62

2 EETD 1.59 51 52.59

3 DoS 4.01 64 68.01

4 DDoS 4.44 69.23 73.67

5 DC 5.69 64 69.69

6 DT 5.53 64 69.53

7 BH 5.76 64 69.76

8 BU 2.09 29 31.09

9 NC 1.69 29 30.69

10 UN 1.18 39 40.18

11. Conclusion

This study assessed the implementation of two algorithms,

SVM and GMM, within the context of IDC-ATiC AODV.

Traditionally, solution algorithms were selected based on

rule-based approaches. However, in this study, the time taken

for execution varied from 119ms to 101ms when employing

machine learning (ML) algorithms to predict problems. This

time was evaluated using Problem Finding Time (PFT) and

Algorithm Execution Time (AET).

In the case of SVM, the Total Execution Time (TET) ranged

from 70.39ms to 30.16ms. SVM required only 59.15% of the

time for executing the solution algorithm during higher time

periods, resulting in a reduction of approximately 40.85%

compared to previous execution times. Conversely, during

lower time periods, SVM only utilized 29.86% of the time

compared to previous methods, leading to a reduction of

about 70.14%.

Similarly, for GMM, the TET ranged from 73.67ms to

30.69ms. GMM utilized 61.90% of the time during higher

time periods, reducing execution time by approximately

38.10%. During lower time periods, GMM utilized only

30.38% of the time compared to previous methods, resulting

in a reduction of about 69.62%.

Overall, SVM emerged as the more favorable ML algorithm

for IDS-ATiC AODV, offering greater time efficiency.

Future endeavors should focus on improving the effectiveness

of multiple class classification within the implementation.

Additionally, deployment aspects were not addressed in this

study, indicating a need for their inclusion in future work.

References

[1] N. Kanimozhi, S. Hari Ganesh 2, B. Karthikeyan, "An Analysis of

Machine Learning Solution for QoS and QoE in Network

(Infrastructure Oriented and Less)", International Journal of

Computer Sciences and Engineering, May, Vol.11, Issue.5, pp.41-

59, 2023. ISSN: 2347-2693 (Online)

[2] N. Kanimozhi, S. Hari Ganesh 2, B. Karthikeyan, “Performance

Analysis of MANET Routing Protocols”, International Journal of

Computer Applications (0975 – 8887) December, Vol.185, No. 50,

pp-44-50, 2023.

[3] N. Kanimozhi, S. Hari Ganesh 2, B. Karthikeyan, "Irregularity

Behaviour Detection - Ad-hoc On-Demand Distance Vector

Routing Protocol (IBD - AODV): A Novel Method for Determining

Unusual Behaviour in Mobile Ad-hoc Networks (MANET)",

International Journal on Recent and Innovation Trends in

Computing and Communication ISSN: 2321-8169 September,

Vol.11 Issue: 9, pp.1098-1010, 2023.

[4] N. Kanimozhi, S. Hari Ganesh 2, B. Karthikeyan, "Minimizing

End-To-End Time Delay in Mobile Ad-Hoc Network using

Improved Grey Wolf Optimization Based Ad-Hoc On-demand

Distance Vector Protocol (IGWO-AODV)", International Journal

on Recent and Innovation Trends in Computing and

40.4

52.73

67.26

70.39

70.39

70.13
70.02

30.58
30.16

40.05

40.62

52.59

68.01
73.67

69.69 69.53 69.76

31.09

30.69
40.18

0

10

20

30

40

50

60

70

80

PDR EETD DoS DDoS DC DT BH BU NC UN

Ti
m

e
(m

s)

Algorithms

Total Execution Time (TET)

TET (ms)

TET (ms)

International Journal of Computer Sciences and Engineering Vol.12(4), Apr. 2024

© 2024, IJCSE All Rights Reserved 100

Communication ISSN: 2321-8169, September, Vol.11, Issue:9,

pp.1111-1115, 2023.

[5] B.Karthikeyan, N. Kanimozhi and Dr.S.Hari Ganesh, “Analysis of

Reactive AODV Routing Protocol for MANET”, IEEE Xplore

(978-1-4799-2876-7), Oct, pp. 264-267, 2014.

[6] B.Karthikeyan, N. Kanimozhi and Dr.S.Hari Ganesh, “Security and

Time Complexity in AODV Routing Protocol”, International

Journal of Applied Engineering Research (ISSN:0973-4562), Vol.

10, No.20,June 2015, pp.15542- 155546. – Scopus Indexed.

[7] B. Karthikeyan, Dr.S.Hari Ganesh and N. Kanimozhi, “Encrypt -

Security Improved Ad Hoc On Demand Distance Vector Routing

Protocol (En-SIm AODV)”, ARPN Journal of Engineering and

Applied Sciences (ISSN: 1819-6608), Vol. 11, No. 2, January,

pp.1092-1096, 2016.

[8] B. Karthikeyan,Dr.S.Hari Ganesh and Dr. JG.R. Sathiaseelan, “

Optimal Time Bound Ad-Hoc On-demand Distance Vector Routing

Protocol (OpTiB-AODV)”, International Journal of Computer

Applications (ISSN:0975 – 8887), April, Vol.140, No.6, pp 7-11,

2016.

[9] B. Karthikeyan, Dr.S.Hari Ganesh, Dr. JG.R. Sathiaseelan and N.

Kanimozhi , “High Level Security with Optimal Time Bound Ad-

Hoc On-demand Distance Vector Routing Protocol (HiLeSec-

OpTiB AODV)”,International Journal of Computer Science

Engineering(E-ISSN: 2347-2693), April, Vol.4, No.4, pp.156-164,

2016.

[10] Jhansi Rani Kaka and K. Satya Prasad, “Differential Evolution and

Multiclass Support Vector Machine for Alzheimer’s

Classification”, Hindawi, Security and Communication Networks,

Vol.2022, Article ID 7275433, 13 pages.

[11] Khalid Abualsaud, Elias Yaacoub, Maazen Alsabaan and Mohsen

Guizani, “Lightweight Multi-Class Support Vector Machine-Based

Medical Diagnosis System with Privacy Preservation” Sensors, 23,

9033, 2023. https:// doi.org/10.3390/s23229033.

[12] Ceren Atik, Recep Alp Kut, Reyat Yilmaz, and Derya Birant,

"Support Vector Machine Chains with a Novel Tournament

Voting", Electronics, 12, 2485, 2023.

https://doi.org/10.3390/electronics12112485.

[13] Zhi Quan and Luoxi Pu, "An improved accurate classification

method for online education resources based on support vector

machine(SVM): Algorithm and experiment" Education and

Information Technologies, 28: pp.8097–8111, 2023.

[14] Siva Rajesh Kasa & Vaibhav Rajan, "Avoiding inferior clusterings

with misspecified Gaussian mixture models", 2

Vol:.(1234567890)Scientific Reports | (2023) 13:19164 |

https://doi.org/10.1038/s41598-023-44608-3

www.nature.com/scientificreports/

[15] Abdullahi Abubakar Mas’ud, Arunachalam Sundaram, Jorge

Alfredo Ardila-Rey, Roger Schurch, Firdaus Muhammad-Sukki

and Nurul Aini Bani, "Application of the Gaussian Mixture Model

to Classify Stages of Electrical Tree Growth in Epoxy Resin",

Sensors 2021, 21, 2562. https://doi.org/10.3390/s21072562

https://doi.org/10.3390/electronics12112485
http://www.nature.com/scientificreports/

