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Abstract: The Mobile Ad-Hoc Network presents a remarkable infrastructure-free approach for information exchange between 

source and destination utilizing intermediate nodes. It offers robust security features and tackles time complexity through its 

routing protocols. In the author's prior research, solutions were proposed for approximately eight qualitative and quantitative 

Quality of Service (QoS) metrics, along with a reduction in solution algorithm execution time. These solutions were automated 

using Machine Learning (ML) algorithms, leveraging a dataset named Infra-Less KMS and an optimal algorithm, Support 

Vector Machine (SVM) & Gaussian mixture model (GMM) identified in previous works. In this study, the IDS-ATiC AODV 

Solution algorithm will be implemented using SVM, with a focus on evaluating prediction accuracy. 
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1. Introduction  
 

The Mobile Ad-Hoc Network (MANET) presents various 

security and time complexity challenges, such as Packet 

Delivery Ratio issues, End-to-End time delays, concerns 

about unreliable nodes, and potential attacks like Black Hole 

and Grey Hole attacks, as well as link breaks. The IDS-ATiC 

AODV routing protocol emerges as a comprehensive solution 

to address these challenges. Initially, these algorithms are 

implemented directly within simulators and thoroughly 

evaluated, demonstrating excellent performance across 

different scenarios. When the MANET experiences low 

traffic, the IDS-ATiC AODV routing protocol yields 

outstanding results both with and without intruders. However, 

as network traffic increases, the overhead and Normalized 

Routing Load (NRL) tend to escalate, leading to longer 

communication times in higher traffic scenarios. 

 

Communication time denotes the duration taken for packets to 

travel from the source to the destination. The solution 

algorithm aims to minimize End-to-End Time Delay (EETD). 

However, an increase in Overhead and Normalized Routing 

Load can lead to a rise in the normal EETD. This, in turn, 

may cause a decrease in Packet Delivery Ratio (PDR). 

Traditionally, drops in PDR could be attributed to issues such 

as Black Holes, Unreliable Nodes, and poor bandwidth. 

However, now, drops in PDR can also occur due to the 

execution of the solution algorithm. 

The solution algorithm comprises a collection of algorithms, 

each addressing specific network issues. Whenever a 

particular issue arises in the network and satisfies specific 

conditions, it triggers the execution of the solution algorithm. 

At such times, all algorithms may execute, or only a subset 

may execute depending on the specific conditions. 

Regardless, the execution may lead to increased Overhead 

and Normalized Routing Load, consequently extending the 

execution time. 

 

Efforts should be made to decrease execution time. 

Integrating Machine Learning (ML) with the solution 

algorithm can provide a promising path forward. The author's 

prior research has already paved the way for incorporating 

ML algorithms. The creation of the Infra-Less KMS dataset 

was specifically tailored for integrating ML techniques, while 

the author's recent work identified the optimal ML algorithm, 

Support Vector Machine (SVM) and Gaussian Mixture Model 

(GMM), for enhancing the IDS-ATiC AODV routing 

protocol. 

This work tells how to utilize SVM & GMM ML algorithm 

with IDS-ATiC AODV routing algorithm by the use of Infra-

Less KMS dataset. 

 

2. Review of Literature  
 

In their study, Jhansi Rani Kaka et al. [10] introduced the DE-

MSVM model aimed at improving the classification 
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performance of Alzheimer's disease. They utilized ADNI 

fMRI and PET images for testing the effectiveness of 

Alzheimer's classification. A normalization method was 

employed to enhance the quality of the images. Feature 

extraction using the AlexNet method and feature selection 

through DE were conducted to identify relevant features for 

classification. Subsequently, the MSVM model was applied to 

the selected features to classify Alzheimer's images. This 

section provides a comprehensive overview of the results 

obtained from the proposed DE-MSVM approach. 

 

Sherif Abdelfattah et al. [11] present a methodology where 

the term "hospital" (H) refers to the entity owning the model, 

while "patient" (P) represents the user of the model. The 

proposed approach unfolds in four distinct phases. Firstly, 

during the system initialization stage, the key distribution 

center (KDC) computes and distributes secret keys to both H 

and P. Moving on to the model encryption phase, each 

parameter vector of the support vector machine (SVM) model 

is encrypted by H. These encrypted parameters, along with 

random numbers used for masking classification results, are 

then outsourced to the cloud server (CS). In the subsequent 

step of medical data encryption, P encrypts their medical data 

vector, including symptoms and vital data, before transmitting 

it to the server for input to the diagnosis model and 

computation of the masked classification score in the medical 

diagnosis phase. Finally, these masked classifications are sent 

back to P for unmasking and subsequent interpretation. 

 

Ceren Atik et al. [12] introduce a novel approach called 

Support Vector Machine Chains (SVMC), which employs a 

structured method where a series of models are trained with 

attribute reduction at each stage. Predictions from each 

learner within the chain are combined using a unique voting 

mechanism known as tournament voting. This voting process 

involves dividing classifier results by the tournament size and 

subsequently employing a selection approach based on class 

labels within groups for further processing. The approach 

iteratively progresses through subsequent rounds until the end 

of the tournament, where the winning class label is designated 

as the final prediction. 

 

Zhi Quan et al. [13] emphasize the significant impact Support 

Vector Machines (SVM) have made in various fields such as 

modern machining, protein prediction, and face detection. 

They highlight the convenience of SVM's reliance solely on 

support vectors for model determination, facilitating training 

processes. However, they also acknowledge drawbacks, 

particularly the inefficiency of existing SVM models in 

training large-scale datasets for practical applications. Thus, 

future SVM development may focus on enhancing 

algorithmic efficiency. Furthermore, while SVM exhibits 

theoretical advantages, its practical application research lags 

behind. Therefore, future research is poised to concentrate on 

expanding SVM's applicability in everyday life and exploring 

novel application domains. 

 

Siva Rajesh Kasa et al. [14] address the issue of subpar 

solutions arising from clustering with improperly specified 

Gaussian Mixture Models (GMMs). These solutions exhibit 

distinct characteristics, including asymmetrical component 

orientation and sizes, as well as varying frequency of 

occurrence compared to spurious solutions. Through 

theoretical analysis, we unveil a novel relationship between 

the asymmetry of fitted components and model 

misspecification. Future exploration of this correlation 

promises to be intriguing. 

 

Abdullahi Abubekar Mas'ud et al. [15] employ Gaussian 

Mixture Models (GMM) for clustering and classifying 

electrical trees emerging from epoxy resin insulation in this 

study. Various partial discharge (PD) samples are collected at 

different voltages spanning from initial to final breakdown 

stages. Findings reveal that PD dynamics vary depending on 

stressing voltages and tree growth levels, leading to different 

breakdown times. GMM is favored over alternative methods 

due to its robustness and capability to perform hard clustering 

on intricate data like electrical tree patterns. Results 

demonstrate GMM's effectiveness in classifying patterns from 

initial to breakdown levels for breakdown times exceeding an 

hour, though not for times under an hour, particularly with 

samples stressed at the highest voltage of 16 kV. PD patterns 

for shorter breakdown times exhibit similar clusters across 

degradation stages. Cluster centers and confidence intervals 

are developed to recognize PD patterns at various stages. 

Nonetheless, further validation through experimentation with 

different samples at varied voltages and breakdown times is 

warranted. Additionally, exploring different insulating 

materials such as polyethylene or cross-linked polyethylene 

could further evaluate the proposed classification tool's 

efficacy. 

 

3. Support Vector Machine (SVM) 
 

SVM stands for Support Vector Machine, a supervised 

machine learning technique applicable to both classification 

and regression problems.  

 
 

Its primary function is to establish an optimal boundary, often 

referred to as a hyperplane, between distinct classes within a 

dataset. In essence, SVM undertakes intricate data 

transformations based on a selected kernel function, with the 

objective of maximizing the margin between data points. 
 

• SVM Operation: In its basic form, particularly in cases of 

linear separability, SVM endeavours to locate a line that 

maximizes the margin between two classes within a two-

dimensional space. 
 

• SVM Objective: The main aim of SVM is to identify a 

hyperplane that best separates data points according to their 

respective classes within an n-dimensional space. The data 

points situated closest to this hyperplane, known as support 

vectors, play a crucial role in defining the separation. 
 

• Illustration: As depicted in the provided diagram, the 

support vectors are evident as three points aligned along 

scattered lines, encompassing two blue and one green support 

vectors. The separation hyperplane is visually represented by 

the solid red line. 
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Figure 1: SVM: Three point aligned along scattered lines. 

 

3.1. Multiclass Classification Using SVM 

In its most fundamental form, SVM lacks native support for 

multiclass classification. To address this, multiclass problems 

are typically decomposed into multiple binary classification 

tasks, allowing SVM to be applied. 

Various methods are commonly employed for multiclass 

classification using SVM (multiclass support vector 

machines), including: 

 

 One vs One (OVO) approach 

 Directed Acyclic Graph (DAG) approach 

 One vs All (OVA) approach 

 

Now, let's delve into each of these strategies individually, 

examining their intricacies 

 

3.1.1. One vs One (OVO) 

This strategy breaks down our multiclass classification task 

into binary subproblems. As a result, we generate binary 

classifiers for each pair of classes. Final predictions are made 

by combining majority voting with the confidence criterion 

based on distance from the margin. 

However, a notable drawback of this method is the need to 

train multiple SVMs. 

In the context of multi-class/multi-label problems with L 

categories, let's consider the (s, t)-th classifier: 

 Positive Samples: all points in class s ({ xi: s ∈ yi }) 

 Negative Samples: all points in class t ({ xi: t ∈ yi }) 

 fs, t(x): decision value of this classifier (where a larger 

value of fs, t(x) indicates a higher probability for label s 

over label t) 

 f t, s(x) = – f s, t(x) 

 Prediction: f(x) = argmax s ( Σ t fs, t(x) ) 

For example, let's envision a scenario involving three-class 

classification problems: Green, Red, and Blue. 

 

In the One-to-One approach, the objective is to find the 

hyperplane that effectively separates each pair of classes 

while disregarding the presence of points from the third class. 

For instance, the Red-Blue line focuses solely on maximizing 

the distinction between blue and red points, without factoring 

in the presence of green points 

 

 
Figure 2: SVM-Three-Class Classification 

 

 
Figure 3: Multiple classification 

 

3.1.2. One vs All (OVA) 

In this method, for an N-class problem, we train N SVMs: 

SVM number -1 learns “class_output = 1” versus 

“class_output ≠ 1” 

SVM number -2 learns “class_output = 2” versus 

“class_output ≠ 2” 

... 

... 

SVM number -N learns “class_output = N” versus 

“class_output ≠ N” 

To predict the output for new input data, we predict with each 

of the trained SVMs and then determine which one yields the 

prediction farthest into the positive region, serving as a 

confidence criterion for a specific SVM. 

 

3.1.3. Challenges with N SVM’s 

However, training these N SVMs poses challenges: 

High Computational Complexity: Implementing the One vs 

All (OVA) strategy requires processing more training points, 

leading to increased computational demands. 
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Imbalanced Data: For instance, in an MNIST dataset with 10 

classes (0 to 9) and 1000 points per class, one SVM may be 

trained on 9000 points while another has only 1000, resulting 

in an imbalance. 

To mitigate this issue: 

 Utilize the 3-sigma rule of the normal distribution to fit data 

and subsample accordingly, maintaining class distribution. 

 Randomly select data points from the majority class. 

 Employ popular subsampling techniques like SMOTE. 

For multi-class/multi-label problems with L categories: 

For the t-th classifier: 

 Positive Samples: all points in class t ({ xi: t ∈ yi }) 

 Negative Samples: all points not in class t ({ xi: t ∉ yi }) 

 ft(x): the decision value for the t-th classifier (where a 

larger value of ft indicates a higher probability that x is in 

class t) 

 Prediction: f(x) = argmax t ft(x) 

 
Figure 4: One vs All approach 

 

In the One vs All approach, a hyperplane is sought to separate 

the classes, considering all points and dividing them into two 

groups: one for the points of the class under analysis and 

another for all other points 

A single SVM performs binary classification, distinguishing 

between two classes as follows: 

• The One vs All approach utilizes L SVMs for classification. 

• The One vs One approach employs L(L-1)/2 SVMs for 

classification 

 

4. Gaussian Mixture Model (GMM) 
 

The Gaussian mixture model (GMM) represents a set of 

distributions over vectors with real values in 

ℝ𝑛. The definition of the GMM is as follows: Initially, we 

posit the existence of K Gaussian distributions. Next, to 

generate a sample𝒙 ∈ ℝ𝑛, we begin by choosing one of these 

K Gaussians based on a Categorical distribution 

𝑍 ∼ Cat(𝛼1, … , 𝛼𝐾) ……01 

Here, Z∈{1,2,…,K} indicates which Gaussian to select (for 

instance, if Z=2, we pick the 2nd Gaussian), and α_k 

represents the probability of selecting the k th Gaussian. Once 

Z=z, we then sample X from that z th Gaussian. In other 

words, 

𝑋 ∼ 𝑁(𝜇𝑧, Σ𝑧) ……02 

Here, μ_z denotes the mean of the z th Gaussian, and Σ_z 

represents its covariance matrix. 

This model is represented by the following graphical 

structure: 

 

 
Figure 5: Gaussian Mixture Model 

 

Each of the K Gaussian distributions possesses its distinct set 

of parameters, including a mean vector and a covariance 

matrix. 

Additionally, the probabilities α_1,…,α_k associated with 

selecting the Gaussians are also considered as parameters of 

the model. We will refer to this comprehensive collection of 

model parameters as 

Θ = {𝝁1, … , 𝝁𝐾 , 𝚺1, … , 𝚺𝐾 , 𝛼1, … , 𝛼𝐾} ……03 

In scenarios where GMMs are employed, such as in the 

context of data clustering (which will be further explored), Z 

is commonly unobserved. Consequently, our attention is 

directed towards the marginal distribution of X, characterized 

by its density function: 

 

𝑝(𝒙; Θ)∶= ∑  

𝐾

𝑘=1

 𝑃(𝑍 = 𝑘; Θ)𝑝(𝒙 ∣ 𝑍 = 𝑘; Θ)

 = ∑  

𝐾

𝑘=1

 𝛼𝑘𝜙(𝒙; 𝝁𝑘 , 𝚺𝑘)

 

……04 

where ϕ represents the probability density function of the 

multivariate Gaussian distribution: 

𝜙(𝒙; 𝝁, 𝚺): =
1

(2𝜋)
𝑛
2det (𝚺)

1
2

exp [−
1

2
(𝒙

− 𝝁)𝑇𝚺−1(𝒙 − 𝝁)] 

……05 

 

Below is an illustrative density function for a two-

dimensional GMM featuring three Gaussians (i.e., K=3) 
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Figure 6: Two-dimensional GMM 

 

4.1. A framework for clustering data 

Let's consider a dataset containing points𝒙1, 𝒙2, … , 𝒙𝑛 ∈ ℝ𝑛, 

and our objective is to identify clusters among these data 

points where points within a cluster exhibit greater similarity 

to each other compared to points outside their cluster. GMMs 

offer a framework for uncovering such clusters. 

To cluster the data, we start with a strong assumption: that our 

data points were generated from a GMM with K Gaussians 

(where K represents the assumed number of clusters). 

However, we lack knowledge about the GMM's parameters, 

including the means and covariances of each Gaussian, as 

well as the assignment of each data point to a specific 

Gaussian (represented by the random variables 𝑍1, … , 𝑍𝑛). 

This scenario is depicted in the illustration below. On the left 

side, we have an ideal scenario where we know the 

parameters of the GMM and have samples 𝒙1, … , 𝒙𝑛generated 

from that model. Importantly, we also have information about 

which Gaussian generated each data point - denoted as 

𝑧1, … , 𝑧𝑛 (these are indicated by the colors of the data points). 

On the right side, we are only provided with 𝒙1, … , 𝒙𝑛, 

lacking knowledge about the model parameters Θ and the 

assignment of data points to Gaussians, 𝑧1, … , 𝑧𝑛. In other 

words, 𝒙1, … , 𝒙𝑛constitutes the observed data, while 

𝑧1, … , 𝑧𝑛represents the latent data. 

 

 
Figure 7: Idealized scenario of GMM 

Only X is observable (Realistic scenario) 

 
Figure 8: Realistic scenario of GMM 

 

To conduct clustering on 𝒙1, … , 𝒙𝑛, we can proceed with the 

following steps. Initially, we must estimate the values for Θ. 

This estimation process will be extensively discussed in this 

blog post, but for now, let's assume we have an estimate 

denoted as 

 

Θ̂: = {𝝁1ˆ , … , 𝝁�̂� , 𝚺1̂, … , 𝚺�̂� , 𝛼1̂, … , 𝛼�̂�} 
……06 

With this estimate in hand, we can allocate 𝒙𝑖to the Gaussian 

(or cluster) that is deemed most probable to have generated 

𝒙𝑖: 

arg max
𝑘∈{1,…,𝐾}

 𝑃(𝑍𝑖 = 𝑘 ∣ 𝒙𝑖; Θ̂) ……07 

Applying Bayes' rule, we obtain 

𝑃(𝑍𝑖 = 𝑘 ∣ 𝒙𝑖; Θ̂) =
𝑝(𝒙𝑖 ∣ 𝑍𝑖 = 𝑘; Θ̂)𝑃(𝑍𝑖 = 𝑘; Θ̂)

∑  𝐾
ℎ=1  𝑝(𝒙𝑖 ∣ 𝑍𝑖 = ℎ; Θ̂)𝑃(𝑍𝑖 = ℎ; Θ̂)

 =
𝜙(𝒙𝑖 ∣ �̂�𝑘 , �̂�𝑘)�̂�𝑘

∑  𝐾
ℎ=1  𝜙(𝒙𝑖 ∣ �̂�ℎ , �̂�ℎ)�̂�ℎ

 ……08 

This process is illustrated in the figure below. On the left-

hand side, we represent our estimation for Θ. On the right-

hand side, we allocate each point to the Gaussian that is 

determined to be the most probable origin for that point 

 

 
Figure 9: Identification of Cluster 

 

Notice that we have identified three clusters in the data 

corresponding to the three Gaussians. 

Now, let's return to the objective of estimating values for Θ. 

This can be pursued using the principle of maximum 

likelihood: 

Θ̂: = arg max
Θ

 ∏  

𝑛

𝑖=1

𝑝(𝒙𝑖; Θ) ……09 
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How can we address this optimization problem? It happens 

that the EM algorithm offers a straightforward approach, as 

we'll explore in detail later in this post 

 

4.2. GMM for Cluster 

When using GMMs for clustering, there are several key 

considerations to bear in mind. Firstly, GMMs necessitate the 

user to specify K, which represents the number of Gaussians 

posited to have generated the data.  

 

This K value determines the number of clusters sought by the 

algorithm. If K is set too low, the maximum-likelihood 

estimation of the model may result in grouping Gaussians that 

encompass multiple 'true' clusters. Conversely, if K is set too 

high, some 'true' clusters might be fragmented into multiple 

smaller clusters. 

For instance, consider the dataset below, which was generated 

with three Gaussians (left), but we are fitting a GMM with 

two Gaussians (middle) and five Gaussians (right): 

 

 
Figure 9: Colour based identification of Cluster 

 

On the left, each point is coloured based on the Gaussian from 

which it was sampled. It's evident that when K is too small 

(middle), two of the true clusters are merged into a single 

cluster. Similarly, when K is too large (right), some of the 

true clusters are fragmented into multiple smaller clusters. 

 

 
Figure 10: Identifying cluster shape 

 

Another crucial aspect is that GMMs excel at identifying 

clusters shaped like 'blobs'—sets of data points forming 

ellipsoid-like clusters. However, when the data exhibits more 

intricate structures, GMMs may not yield clusters that align 

with intuitive interpretations. For instance, consider a dataset 

comprising two concentric rings. A GMM seeking two 'blob-

like' clusters will struggle to separate the inner ring from the 

outer ring. As depicted below, the GMM divides each ring in 

half and assigns each half to a cluster:  

4.3. Estimating maximum likelihood for GMMs using the 

EM algorithm 

The EM algorithm is a straightforward option for conducting 

maximum likelihood estimation of GMM parameters due to 

its simplicity in implementation. For a comprehensive 

examination of the EM algorithm, please refer to my earlier 

blog post. 

The EM algorithm necessitates iteratively alternating between 

an E-step and an M-step until the parameters converge 

 

4.3.1. E-Step 

In the E-step, we need to define the Q-function. Let's denote a 

given iteration of the algorithm as t. The Q-function for the t 

th iteration is formulated as follows: 

𝑄𝑡(Θ): = ∑  

𝑛

𝑖=1

∑  

𝐾

𝑘=1

𝛾𝑡,𝑖,𝑘log [𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘, 𝚺𝑘)] ……10 

Where 

𝛾𝑡,𝑖,𝑘: =
𝛼𝑡,𝑘𝜙(𝒙𝑖; 𝝁𝑡,𝑘, 𝚺𝑡,𝑘)

∑  𝐾
ℎ=1  𝛼𝑡,ℎ𝜙(𝒙𝑖; 𝝁𝑡,ℎ, 𝚺𝑡,ℎ)

 ……11 

 

and 𝛼𝑡,𝑘 , 𝝁𝑡,𝑘, and 𝚺𝑡,𝑘 are the 𝑡 th estimates of 𝛼𝑘, 𝝁𝑘, and 𝚺𝑘 

respectively. 

 

It's worth mentioning that the primary computation required 

at this step involves calculating the 𝛾𝑡,𝑖,𝑙variables. As 

demonstrated in the derivation, these variables indicate the 

likelihood that each data point was sampled from each 

Gaussian, as estimated using the parameter set Θ𝑡. In essence, 

𝛾𝑡,𝑖,𝑙signifies the probability that data point 𝑖 was generated by 

the 𝑘 th Gaussian, as estimated at the 𝑡 th iteration of the 

algorithm. 

 

4.3.2. M-Step 

During the M-step, our objective is to determine Θ that 

maximizes Q_t (Θ). In other words, we need to calculate the 

following: 

 

Θ𝑡+1: = arg max
Θ

 𝑄𝑡(Θ) ……12 

The solution to this optimization problem is expressed as : 

∀𝑘, 𝛼𝑡+1,𝑘∶=
1

𝑛
∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘

∀𝑘, 𝝁𝑡+1,𝑘∶=
1

∑  𝑛
𝑖=1   𝛾𝑡,𝑖,𝑘

∑  

𝑛

𝑖=1

  𝛾𝑡,𝑖,𝑘𝒙𝑖

∀𝑘, 𝚺𝑡+1,𝑘∶=
1

∑  𝑛
𝑖=1   𝛾𝑡,𝑖,𝑘

∑  

𝑛

𝑖=1

  𝛾𝑡,𝑖,𝑘(𝒙𝑖 − 𝝁𝑡,𝑘)(𝒙𝑖 − 𝝁𝑡,𝑘)
𝑇

 13 

 

4.3.3. Hot Steps 

 

The following code snippet describes the EM algorithm: 

 

While  

(𝒙1, … , 𝒙𝑛; Θ𝑡) − 𝑝(𝒙1, … , 𝒙𝑛; Θ𝑡−1) < 𝜖  14 
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∀𝑘, ∀𝑖, 𝛾𝑡,𝑖,𝑘 ←
𝛼𝑡,𝑘𝜙(𝒙𝑖; 𝝁𝑡,𝑘 , 𝚺𝑡,𝑘)

∑  𝐾
ℎ=1  𝛼𝑡,ℎ𝜙(𝒙𝑖; 𝝁𝑡,ℎ, 𝚺𝑡,ℎ)

∀𝑘, 𝛼𝑡+1,𝑘 ←
1

𝑛
∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘

∀𝑘, 𝝁𝑡+1,𝑘 ←
1

∑  𝑛
𝑖=1   𝛾𝑡,𝑖,𝑘

∑  

𝑛

𝑖=1

  𝛾𝑡,𝑖,𝑘𝒙𝑖

∀𝑘, 𝚺𝑡+1,𝑘 ←
1

∑  𝑛
𝑖=1  𝛾𝑡,𝑖,𝑘

∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘(𝒙𝑖 − 𝝁𝑡,𝑘)(𝒙𝑖 − 𝝁𝑡,𝑘)
𝑇

𝑡 ← 𝑡 + 1

 

ϵ is a parameter provided by the user that governs 

convergence criteria. Additionally, it's important to note that 

the initial parameters Θ0are not critical and can be arbitrarily 

set. Since the EM algorithm converges to a local maximum, 

it's often beneficial to run EM multiple times with different 

initial values of Θ0and select the solution that maximizes the 

likelihood function. 

 

4.3.4. The EM algorithm in operation 

 

 
Figure 11: EM algorithm for GMM 

 

In the illustration above and below, we showcase the EM 

algorithm for GMMs in progress. As the number of iterations 

increases, the means and covariances of each Gaussian 

gradually converge, aligning the Gaussians with the three 

clusters in the data: 

 
Figure 11 Gaussians with the three clusters 

 

4.3.5. Developing the EM algorithm for Gaussian 

Mixture Models 

Derivation of the E-step 

Here, we establish the Q-function at the 𝑡 
th

 iteration. Let 

X:={ 𝒙1, … , 𝒙𝑛} denote the set of observed data (i.e., the data 

points), and Z:={ 𝑧1, … , 𝑧𝑛} represent the collection of latent 

data (i.e., indicating which Gaussian generated each data 

point). As a reminder, the Q-function is defined as: 

𝑄𝑡(Θ): = 𝐸𝑍∣𝑋;Θ𝑡
[log 𝑝(𝑋, 𝑍; Θ) ……15 

Obtaining the Q-function involves deriving an analytical 

expression for this expectation, enabling its implementation in 

a computer program. For GMMs, this derivation is as follows 

𝑄𝑡(Θ)∶= 𝐸𝑍∣𝑋;Θ𝑡
[log 𝑝(𝑋, 𝑍; Θ)]

 = ∑  

𝑛

𝑖=1

 𝐸𝑧𝑖∣𝒙𝑖;Θ𝑡
[log 𝑝(𝒙𝑖 , 𝑧𝑖 ; Θ)]  by the linearity of expectation 

 = ∑  

𝑛

𝑖=1

  ∑  

𝐾

𝑘=1

 𝑃(𝑧𝑖 = 𝑘 ∣ 𝒙𝑖 ; Θ𝑡)log 𝑝(𝒙𝑖 , 𝑧𝑖; Θ)

 = ∑  

𝑛

𝑖=1

  ∑  

𝐾

𝑘=1

 
𝑃(𝒙𝑖 ∣ 𝑧𝑖 = 𝑘; Θ𝑡)𝑃(𝑧𝑖 = 𝑘; Θ𝑡)

∑  𝐾
ℎ=1  𝑃(𝒙𝑖 ∣ 𝑧𝑖 = ℎ; Θ𝑡)𝑃(𝑧𝑖 = ℎ; Θ𝑡)

log 𝑝(𝒙𝑖 , 𝑧𝑖 ; Θ)

 = ∑  

𝑛

𝑖=1

  ∑  

𝐾

𝑘=1

 
𝛼𝑡,𝑘𝜙(𝒙𝑖; 𝝁𝑡,𝑘 , 𝚺𝑡,𝑘)

∑  𝐾
ℎ=1  𝛼𝑡,ℎ𝜙(𝒙𝑖; 𝝁𝑡,ℎ, 𝚺𝑡,ℎ)

log 𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘 , 𝚺𝑘)

 = ∑  

𝑛

𝑖=1

  ∑  

𝐾

𝑘=1

  𝛾𝑡,𝑖,𝑘log 𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘 , 𝚺𝑘)

 
……

16 

 

where we let 

𝛾𝑡,𝑖,𝑘: =
𝛼𝑡,𝑘𝜙(𝒙𝑖; 𝝁𝑡,𝑘, 𝚺𝑡,𝑘)

∑  𝐾
ℎ=1  𝛼𝑡,ℎ𝜙(𝒙𝑖; 𝝁𝑡,ℎ, 𝚺𝑡,ℎ)

 ……17 

 

4.3.6. Developing the M-step 

In the M-step, the objective is to determine  Θ𝑡+1that 

maximizes the Q-function. 

It's important to note that the 𝛼1, … , 𝛼𝑘represent the 

probabilities of a given point being sampled from each 

Gaussian, and consequently, these probabilities must sum to 

one. Therefore, when optimizing the Q-function with respect 

to these parameters, it's imperative to do so under the 

constraint that they sum to one. In other words, we need to 

solve the following equation: 

 

Θ𝑡+1: = arg max
Θ

 𝑄𝑡(Θ) ……18 

with the condition that 

 

∑  

𝐾

𝑘=1

𝛼𝑘 = 1 ……19 

Due to the presence of the equality constraint and the 

continuity of both the objective and the constraint, this 

optimization problem can be addressed using Lagrange 

multipliers. Initially, we construct the Lagrangian as follows: 

 

𝐿(Θ, 𝜆): = ∑𝑖=1
𝑛  ∑𝑘=1

𝐾  𝛾𝑡,𝑖,𝑘log 𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘, 𝚺𝑘)

+ 𝜆(∑𝑘=1
𝐾  𝛼𝑘 − 1) 

……20 

Now, we aim to find Θ that satisfies the condition where the 

derivative of the Lagrangian equals zero. 

We begin with 𝛼1, … , 𝛼𝐾. For a particular k, 
∂𝐿(Θ, 𝜆)

∂𝛼𝑘

=
1

𝛼𝑘

∑  

𝑖=1

𝛾𝑡,𝑖,𝑘 + 𝜆 ……21 

By setting it to zero and solving for α_k, we obtain: 

0 =
1

𝛼𝑘

∑  

𝑖=1

 𝛾𝑡,𝑖,𝑘 + 𝜆

⟹ 𝛼𝑘  = −
1

𝜆
∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘

 ……22 

Substituting this into the constraint ∑𝑘=1
𝐾  𝛼𝑘 = 1, we can 

determine λ by solving 
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∑  

𝐾

𝑘=1

  −
1

𝜆
∑  

𝑛

𝑖=1

  𝛾𝑡,𝑖,𝑘  = 1

⟹ 𝜆 = − ∑  

𝑛

𝑖=1

 ∑  

𝐾

𝑘=1

 𝛾𝑡,𝑖,𝑘

⟹ 𝜆 = −𝑛  because ∑  

𝐾

𝑘=1

 𝛾𝑡,𝑖,𝑘 = 1

 …23 

Lastly, substituting λ back into the equation that equates the 

derivative of the Lagrangian to zero, we can calculate the 

ultimate value of 𝛼𝑘: 

0 =
1

𝛼𝑘

∑  

𝑖=1

 𝛾𝑡,𝑖,𝑘 + 𝜆

⟹ 0 =
1

𝛼𝑘

∑  

𝑖=1

 𝛾𝑡,𝑖,𝑘 − 𝑛

⟹ 𝛼𝑘  =
1

𝑛
∑  

𝑖=1

  𝛾𝑡,𝑖,𝑘

 …24 

And with that, we have determined the 𝛼1, … , 𝛼𝑘parameters 

that maximize the Q-function. 

Next, we proceed to the Gaussian means. Initially, we 

calculate the derivative of the Lagrangian with respect to 

𝝁𝑘for a specific 𝑘: 

∂𝐿(Θ, 𝜆)

∂𝝁𝑘

∶= ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘

∂

∂𝝁𝑘

log 𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘 , 𝚺𝑘)

 = ∑  

𝑛

𝑖=1

 
𝛾𝑡,𝑖,𝑘

𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘, 𝚺𝑘)

∂

∂𝝁𝑘

𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘 , 𝚺𝑘)

 = ∑  

𝑛

𝑖=1

  𝛾𝑡,𝑖,𝑘[−2𝚺𝑘
−1(𝒙𝑖 − 𝝁𝑘)]

 25 

The final step of this derivation is based on the fact that 
∂

∂𝑠
(𝒙 − 𝒔)𝑇𝑾(𝒙 − 𝒔) = −2𝑾−1(𝒙 − 𝒔) …….26 

Now, by equating the derivative of the Lagrangian with 

respect to the mean vector to the zero vector, we can 

determine 𝝁𝑘: 

𝟎 = ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘[−2𝚺𝑘
−1(𝒙𝑖 − 𝝁𝑘)]

⟹ 𝟎 = 𝚺𝑘
−1 ∑  

𝑛

𝑖=1

  𝛾𝑡,𝑖,𝑘(𝒙𝑖 − 𝝁𝑘)

⟹ 𝚺𝑘𝟎 = 𝚺𝑘𝚺𝑘
−1 ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘(𝒙𝑖 − 𝝁𝑘)

⟹ 𝟎 = ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘(𝒙𝑖 − 𝝁𝑘)

⟹ 𝝁𝑘 =
1

∑  𝑛
𝑖=1   𝛾𝑡,𝑖,𝑘

∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘𝒙𝑖

 ……27 

And now, we have found the Gaussian means that maximize 

the Q-function. 

 

 

Lastly, we address the determination of the covariance 

matrices that maximize the Q-function. Initially, we calculate 

the gradient with respect to the covariance matrix 𝚺𝑘for a 

specific 𝑘:   
∂𝐿(Θ, 𝜆)

∂𝚺𝑘

∶= ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘

∂

∂𝚺𝑘

log 𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘, 𝚺𝑘)

 = ∑  

𝑛

𝑖=1

 
𝛾𝑡,𝑖,𝑘

𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘, 𝚺𝑘)

∂

∂𝚺𝑘

𝛼𝑘𝜙(𝒙𝑖; 𝝁𝑘, 𝚺𝑘)

 = ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘 [−
1

2

∂

∂𝚺𝑘

log det (𝚺𝒌) −
1

2

∂

∂𝚺𝑘

(𝒙𝑖 − 𝝁𝑘)𝑇𝚺𝑘
−1(𝒙𝑖 − 𝝁𝑘)]

 = ∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘 −
1

2
𝚺𝑘

−1 − 𝛾𝑡,𝑖,𝑘

1

2

∂

∂𝚺𝑘

(𝒙𝑖 − 𝝁𝑘)𝑇𝚺𝑘
−1(𝒙𝑖 − 𝝁𝑘)  See Note 1 below 

 = −
1

2
∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘𝚺𝑘
−1 − 𝛾𝑡,𝑖,𝑘𝚺𝑘

−1(𝒙𝑖 − 𝝁𝑖)(𝒙𝑖 − 𝝁𝑖)
𝑇𝚺𝑘

−1  See Note 2 below 

 = −
1

2
(∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘) 𝚺𝑘
−1 − 𝚺𝑘

−1 (∑  

𝑛

𝑖=1

 𝛾𝑡,𝑖,𝑘(𝒙𝑖 − 𝝁𝑖)(𝒙𝑖 − 𝝁𝑖)
𝑇) 𝚺𝑘

−1

 28 

 

5. IDS-ATiC AODV routing algorithm 
 

The diagram Figure 12 illustrates the IDS-ATiC algorithms 

and their respective sub-algorithms. This algorithm is divided 

into two main categories: IDS and ATiC. IDS focuses 

exclusively on qualitative issues or active problems related to 

data, specifically Data Change (DC) and Data Theft (DT). 

These issues are addressed through five sub-algorithms: 

 IBD (Irregularity Behavior Detection): This algorithm 

identifies trusted nodes by detecting anomalies in a system 

or network based on trust relationships among its 

components. 

 LinBr (Link Break): It prevents link breaks by creating 

optimal routes with trusted nodes. 

 BlaHA (Black Hole Avoidance) and GrHoA (Grey Hole 

Avoidance): These algorithms deal with attacks where 

trusted nodes behave as untrusted nodes, such as Black 

Hole and Grey Hole attacks, respectively. BlaHA checks 

each reply from neighboring nodes to detect anomalies, 

while GrHoA focuses on mitigating Grey Hole attacks. 

 UnB (Unbelievable Node Avoidance): This algorithm 

identifies and avoids unreliable nodes by assessing the ratio 

of received to sent packets, preferring nodes with ratios 

closer to one. 

ATiC focuses on passive quantitative issues and aims to 

reduce time-related complexity through its five sub-

algorithms: 

 IGWO (Improved Grey Wolf Optimization Based): This 

algorithm detects malicious nodes by simulating the social 

dynamics of a grey wolf pack. 

 MulP (Multiple Path towards Destination): It finds multiple 

routes between the source and destination to improve 

efficiency. 

 PktSiR (Packet Size Regulator): This algorithm adjusts 

packet size according to the available bandwidth, increasing 

packet size during low traffic and decreasing it during high 

traffic. 

 MulPKt (Multiple Packet towards Destination): It sends 

multiple packets simultaneously using the optimal paths 

determined by MulP. 

 MulOR (Multiple Optimal Route between Tx and Rx): This 

algorithm finds multiple optimal routes between the 

transmitter and receiver, considering factors like the 

number of hops and available bandwidth, and then sorts 

them based on cost before utilizing them for packet 

transmission. 
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Figure 12 : Improved Data Security – Avoid Time Complexity (IDS-

ATiC) 

 

6. Infra-Less KMS dataset 
 

The Infra-Less KMS dataset is a novel compilation tailored 

for this particular research endeavor. Its attributes are 

amalgamated from the KDDCup99 and 

Dataset_Unicauce_V2_87atts datasets, with several attributes 

being specifically introduced for this study.  

Comprising 31 features, only 7 are shared, while the 

remaining 24 are uniquely utilized to forecast ten distinct 

types of attacks, namely: 

 DoS & DDoS 

 Data Change 

 Data Theft 

 Block Hole 

 EETD 

 PDR 

 (BU) Bandwidth Utilization 

 NC (Network Congestion) 

 UN (Unbelievable Node) 

 

This dataset was curated from the OmNetpp simulator and the 

breakdown of its data is detailed in the table below. 

 
Table 1:  Display the number of dat allocated for each attack 

Total Number of  Rows 2,11,010.00 

DoS (Denial of Service)  &  

DDoS (Distributed Denial of Service) 
32,021.00 

DC (Data Change) 10,165.00 

DT (Data Theft) 12,010.00 

BH (Block Hole) 35,202.00 

EETD (End to End Time Delay) 50,151.00 

PDR (Packet Delivery Ratio) 42,435.00 

BU (Bandwidth Utilization) 9,682.00 

NC(Network Congestion) 9,669.00 

UN(Unbelievable Node) 9,675.00 

Thus, this newly crafted dataset contains ample data for each 

specified attack outlined in the IDS-ATiC algorithm. 

7. Proposed Work 
 

IDS-ATiC is an algorithm that has already been integrated 

with AODV. In this study, IDS-ATiC is extended by 

incorporating either Support Vector Machine (SVM) or 

Gaussian Mixture Model (GMM) as the underlying machine 

learning (ML) algorithm. 

 

Previous research by the author evaluated ML algorithms and 

found SVM and GMM to be a suitable choice for 

implementing IDS-ATiC within the AODV framework, albeit 

being a supervised learning algorithm requiring labelled 

attributes. In contrast, unsupervised learning algorithms like 

GMM can effectively utilize unlabelled attributes. Hence, in 

this study, both SVM (supervised) and GMM (unsupervised) 

are being implemented. 

 

The proposed work involves the creation of two separate 

models: one utilizing SVM and the other utilizing GMM. 

 

 

 
Figure 13: Visualization of the construction process of the SVM 

 

Data Collection 
from OmNetpp 

Infra-Less KMS 
Dataset 

Pre-Processing 

Feature Selection 

SVM / GMM 
Classifier 

Solution 
Algorithm 
Selection  
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This proposed study aims to identify the most effective 

machine learning algorithm along with its Problem Finding 

Time (PFT). The table below illustrates the required 

combinations of the IDS-ATiC algorithm to address specific 

scenarios. In cases where a machine learning algorithm is not 

available, any rule-based problems will be identified. Initial 

algorithms will then be executed to pinpoint the exact 

problem scenario. Subsequently, the precise combination of 

algorithms will be employed to deliver a solution for that 

particular situation 

7.1. Algorithm execution sequence 

If the rule-based problem identification is performed during 

this period, the combined time for situation identification and 

algorithm execution will range from 119ms to 101ms. The 

minimum time required for a solution is 101ms, while the 

maximum time is 119ms. This variance occurs because all 

initial algorithms must be executed to identify the appropriate 

situation before the corresponding algorithms can be run, 

resulting in this duration. 

 
Table 2: Algorithm Execution Sequence 

Algorithm No. Initial Algorithm Algorithm Sequence   

1 

IBD 

 

MulP 

 

MulOR 

 

MulPkt 

 
  Sequence No. 1 2 3 4   

2 

LinBr 

 

UnB 

 

MulP 

 

MulOR 

 

PktSiR 

 

MulPkt 

 

Sequence No. 1 2 3 4 5 6 

2 

BlaHA & GrHoA 

 

IGWO 

 

MulP 

 

MulOR 

 

MulPkt 

 
 Sequence No. 1 2 3 4 5  

4 

UnB 

 

MulP 

 

MulOR 

 

MulPkt 

 
  Sequence No. 1 2 3 4   

5 

IGWO 

 

MulP 

 

MulOR 

 

MulPkt 

 
  Sequence No. 1 2 3    

6 

MulP 

 

MulOR 

 

MulPkt 

 
   Sequence No. 1 2 3    

7 

MulOR 

 

MulPkt 

 
    Sequence No. 1 2     

 
If a machine learning algorithm is employed and accurately 

identifies a specific situation, the BlaHA and GrHoA 

algorithms will require a longer execution time of 64ms each, 

while the MulOR algorithm will require less execution time, 

specifically 11ms. These details are derived solely from the 

author's prior research. 
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Data collection presents a formidable challenge due to the 

complexity of identifying and selecting attributes that possess 

the requisite characteristics for identifying specific problem 

situations. The author has undertaken this task, deriving 

certain attributes from existing datasets and creating new ones 

as required by the algorithms. Detailed explanations regarding 

the dataset can be found in the dataset section. 

 

7.2. SVM Sample code 

from sklearn.svm import SVC 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report 

# Assuming you have your dataset loaded into X 

(features) and y (target labels) 

# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.2, random_state=42) 

# Initialize the SVM classifier 

svm_classifier = SVC(kernel='rbf', C=1.0, 

gamma='scale', random_state=42) 

# Train the classifier on the training data 

svm_classifier.fit(X_train, y_train) 

# Make predictions on the testing data 

y_pred = svm_classifier.predict(X_test) 

# Evaluate the performance of the classifier 

print(classification_report(y_test, y_pred)) 

 

7.3. GMM Sample code 

# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.2, random_state=42) 

# Fit a separate GMM for each class 

gmms = {} 

for class_label in set(y_train): 

    X_class = X_train[y_train == class_label] 

    gmm = GaussianMixture(n_components=5, 

covariance_type='full')  # Example hyperparameters 

    gmm.fit(X_class) 

    gmms[class_label] = gmm 

# Calculate class probabilities for each data point in 

the testing set 

class_probs = {} 

for class_label, gmm in gmms.items(): 

    class_probs[class_label] = 

gmm.score_samples(X_test) 

# Assign class labels based on the estimated class 

probabilities 

y_pred = [max(class_probs, key=lambda k: 

class_probs[k][i]) for i in range(len(X_test))] 

# Evaluate the performance of the GMM-based 

classifier 

print(classification_report(y_test, y_pred)) 

 

8. Simulation 
 

OMNeT++ is a versatile, customizable, object-oriented C++ 

simulation library and framework designed primarily for 

constructing network simulators. The term 'network' 

encompasses various types, including wired and wireless 

communication networks, on-chip networks, and queueing 

networks. Specific functionalities tailored to domains such as 

sensor networks, wireless ad-hoc networks, Internet protocols, 

performance modelling, and photonic networks are provided 

by independent model frameworks. OMNeT++ features an 

IDE based on Eclipse, a graphical runtime environment, and a 

range of additional tools. Extensions are available for real-

time simulation, network emulation, database integration, 

SystemC integration, and various other capabilities. 

 

8.1. Simulation Parameters 

 
Table 3: Simulation Parameter 

Parameters Values 

Network Size 1000 X 1000 

Number of Nodes 0-500 

Max Speed/ Mobility 10 m/s 

Pause Time 0-100s 

Traffic Model CBR, VBR 

Radio Transmission Range 250m 

Routing Protocol AODV, IDS-ATiC AODV 

Simulation Time 600s 

Note: This simulation parameters were used to create Inra-Less KMS 

Dataset 

9. Methodology 

 
9.1. Accuracy 

Accuracy is calculated by dividing the number of correct 

predictions by the total number of predictions across all 

classes. In binary classification, it can be expressed as: 

 

Accuracy (ACC) = (TP + TN) / (TP + TN + FP + FN) 

 

9.2. Confusion Matrix and Accuracy 

This step is commonly employed in classification 

methodologies. Here, we assess the accuracy of the trained 

model and visualize the confusion matrix. 

 

The confusion matrix is a structured table utilized to present 

the count of accurate and erroneous predictions made by a 

classification model when the actual values of the test set are 

available. It follows a specific format. 

 

 
Figure 14: Confusion Matrix for Accuracy 
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The True values represent the count of accurate predictions. 

Based on the provided confusion matrix, we deduce that out 

of 100 test set instances, 90 were accurately classified while 

10 were misclassified. Thus, the accuracy of the classification 

is determined to be 90%. 

 

10. Result and Discussion  
 

The outcomes encompass the prediction accuracy comparison 

between SVM and GMM, the algorithm execution time 

(AET) based on predefined rules, the time taken to identify 

problems (PFT) with SVM and GMM. Lastly, it incorporates 

the total execution time (TET) for both SVM and GMM. 

 
Table 4: Prediction Accuracy (PA) between SVM and GMM 

S. No. Attacks 
Accuracy (%) 

SVM GMM 

1 PDR 92 81 

2 EETD 78 74 

3 DoS 85 77 

4 DDoS 85 77 

5 DC 71 67 

6 DT 94 86 

7 BH 83 76 

8 BU 83 77 

9 NC 80 73 

10 UN 86 79 

 

Table 4 illustrates the Prediction Accuracy (PA) comparison 

between SVM and GMM. SVM exhibits lower PA compared 

to GMM. Both algorithms operate within the realm of 

multiple class classification. Notably, higher PA correlates 

with better results in terms of Time Complexity and Security 

Complexity. The PA is computed based on 31 attributes and 

2,11,010 samples 

 

In Table 5, each row presents a set of algorithms employed 

for execution under specific circumstances. The table displays 

the time required for each algorithm to run within the given 

simulation parameters and defined scenarios. The study 

encompasses two distinct scenarios: one without intruders and 

the other with 15% intrusion. The computation of algorithm 

execution time is conducted within the context of the latter 

scenario.

 

Following table showing Algorithm Execution Time (AET) of each algorithms sequence 
Table 5: Algorithm Execution Time (AET) 

Tot. Exec. Time Initial Algorithm Algorithm Sequence 

36ms 

IBD 

 

MulP 

 

MulOR 

 

MulPkt 

 
  Execution Time 20ms 5ms  10ms 1ms   

51ms 

LinBr 

 

UnB 

 

MulP 

 

MulOR 

 

PktSiR 

 

MulPkt 

 

Execution Time 15ms 2ms 5ms 10ms 18ms 1ms 

64ms 

BlaHA & GrHoA 

 

IGWO 

 

MulP 

 

MulOR 

 

MulPkt 

 
 Execution Time 25ms 23ms 5ms 10ms 1ms  

18ms 

UnB 

 

MulP 

 

MulOR 

 

MulPkt 

 
  Execution Time 2ms 5ms 10ms 1ms   

39ms 

IGWO 

 

MulP 

 

MulOR 

 

MulPkt 

 
  Execution Time 23ms 5ms 10ms 1ms   

16ms MulP MulOR MulPkt 
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Execution Time 5ms 10ms 1ms    

11 

MulOR 

 

MulPkt 

 
    Execution Time 10ms 1ms     

 
According to these findings, the highest execution time 

recorded is 64ms, observed with the BlaHA and GrHoA 

algorithms. Conversely, the lowest execution time among the 

algorithms is 11ms. 

 

Problem Finding Time (PFT) 

 
Table 6: Problem Finding Time (PFT) between SVM and GMM 

S. No. Attacks 
Time (ms) 

SVM GMM 

1 PDR 1.4 1.62 

2 EETD 1.73 1.59 

3 DoS 3.26 4.01 

4 DDoS 3.72 4.44 

5 DC 6.39 5.69 

6 DT 6.13 5.53 

7 BH 6.02 5.76 

8 BU 1.58 2.09 

9 NC 1.16 1.69 

10 UN 1.05 1.18 

 

 
Figure 15: Comparison of Problem Finding Time (PFT) 

 

The identification of Problem Finding Time is essentially a 

forecasting task facilitated by Machine Learning algorithms. 

This study employed two algorithms, namely SVM and 

GMM, operating on the Infra-Less KMS dataset comprising 

2,11,010 samples and 31 attributes. The findings indicate that 

GMM demonstrates a shorter qualitative Problem Finding 

Time, suggesting it requires less time to predict qualitative 

issues compared to SVM.  

 
While GMM excels in this aspect, SVM exhibits a generally 

satisfactory performance in Problem Finding Time. The graph 

below illustrates the comparison of PFT durations between 

SVM and GMM. Ultimately, SVM demonstrates a 

moderately good overall performance in Problem Finding 

Time. 

 

Total Execution Time (TET) 

 
Table 7: Total Execution Time (TET) with SVM  

S. No. Attacks 
Time (ms) 

PFT AET TET 

1 PDR 1.4 39 40.4 

2 EETD 1.73 51 52.73 

3 DoS 3.26 64 67.26 

4 DDoS 3.72 69.23 70.39 

5 DC 6.39 64 70.39 

6 DT 6.13 64 70.13 

7 BH 6.02 64 70.02 

8 BU 1.58 29 30.58 

9 NC 1.16 29 30.16 

10 UN 1.05 39 40.05 

 

Table 7 presents the Total Execution Time (TET) of the 

SVM. TET is computed by adding two durations: Problem 

Finding Time (PFT) and Algorithm Execution time. PFT is 

solely determined by the ML algorithm used. According to 

the findings, both algorithms yield identical TET values 

except in the case of DDoS, where SVM demonstrates 

superior TET performance. 

 

Figure 16 illustrates the comparison of Total Execution Times 

(TETs) between SVM and GMM. The results suggest that 

both algorithms are suitable for implementation in IDS-ATiC 

AODV. Each algorithm is deemed appropriate for specific 

situations, contributing to a reduction in prediction time. 
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Figure 16: Comparison of Total Execution Time (TET) between SVM and GMM 

 

Table 8: Total Execution Time (TET) with GMM  

S. No. Attacks 
Time (ms) 

PFT AET TET 

1 PDR 1.62 39 40.62 

2 EETD 1.59 51 52.59 

3 DoS 4.01 64 68.01 

4 DDoS 4.44 69.23 73.67 

5 DC 5.69 64 69.69 

6 DT 5.53 64 69.53 

7 BH 5.76 64 69.76 

8 BU 2.09 29 31.09 

9 NC 1.69 29 30.69 

10 UN 1.18 39 40.18 

 

11. Conclusion 
 

This study assessed the implementation of two algorithms, 

SVM and GMM, within the context of IDC-ATiC AODV. 

Traditionally, solution algorithms were selected based on 

rule-based approaches. However, in this study, the time taken 

for execution varied from 119ms to 101ms when employing 

machine learning (ML) algorithms to predict problems. This 

time was evaluated using Problem Finding Time (PFT) and 

Algorithm Execution Time (AET). 

 

In the case of SVM, the Total Execution Time (TET) ranged 

from 70.39ms to 30.16ms. SVM required only 59.15% of the 

time for executing the solution algorithm during higher time 

periods, resulting in a reduction of approximately 40.85% 

compared to previous execution times. Conversely, during 

lower time periods, SVM only utilized 29.86% of the time 

compared to previous methods, leading to a reduction of 

about 70.14%. 

 

Similarly, for GMM, the TET ranged from 73.67ms to 

30.69ms. GMM utilized 61.90% of the time during higher 

time periods, reducing execution time by approximately 

38.10%. During lower time periods, GMM utilized only 

30.38% of the time compared to previous methods, resulting 

in a reduction of about 69.62%. 

 

Overall, SVM emerged as the more favorable ML algorithm 

for IDS-ATiC AODV, offering greater time efficiency. 

 

Future endeavors should focus on improving the effectiveness 

of multiple class classification within the implementation. 

Additionally, deployment aspects were not addressed in this 

study, indicating a need for their inclusion in future work. 
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