

 © 2019, IJCSE All Rights Reserved 856

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

Orchestrated Clusteres using Kubernetes on Cloud Web Services

Mahesh G Prasad

1*
, S. Vignesh

2

1
Department of Computer Science and IT, Jain (Deemed to-be University), Bangalore, India

2
 Department of Computer Science and IT, Jain (Deemed to-be University), Bangalore, India

*Corresponding Author: maheshgprasad@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i5.856860 | Available online at: www.ijcseonline.org

Accepted: 14/May/2019, Published: 31/May/2019

Abstract— In the rapidly developing world of technology where a new concept or a plausible implementation of a long-lost

concept is born and is deployed on the cloud for various benefits that it offers. With the rapidly growing and ever-increasing

dependency on cloud, it is of the most importance to ensure stability from a developer standpoint and it is also very important

that it is dynamically scalable and fault-tolerant and in a hope to achieve the same, here is a project set to fulfill the necessities

of the modern application which could benefit from the autoscaling resource optimized clusterization. This is set to be achieved

by using the help of a popular containerization platform called Docker. Using a container translates to better isolated

environments which are independent of their operational state and in-turn better provides robust security and generally

contributes to the fault tolerant nature of an infrastructure adding Kubernetes in the mix not only makes the deployment highly

robust and scalable it also makes deployment simpler for the developer mainly because of its declarative instruction advantage

over Docker CLI or even KubeCTL’s Imperative instruction type. Majorly optimizing the efforts of developer’s deployment

rather than the build from scratch approach that was previously used extensively. The implementation is designed with fluidity

in mind and its main intention is to provide a seamless experience regardless the operations being carried out in the

background. These background operations may include spawning of new nodes or pods, re-creation of deteriorated or

erroneous containers (PODS) inside the nodes.

Keywords—Scalable, Fault-Tolerant, Containerization, Docker , Clusterization, Robust, Kubernetes, pods,CLI.

I. INTRODUCTION

In this modern day and age, almost all organizations and

major corporations are making their move to the cloud. As it

makes it possible for them to cut down on infrastructural

costs and mainly because they are not required to fork-up the

cost of investing on datacentre grade hardware, with prime

focus now on cloud, almost all the companies which have

had their cloud presence are seeking ways to improve their

online presence more efficiently and securely. This being

their key objective, some of them might prefer to use

fail-over servers, some of them may prefer to have their

cloud processes outsourced and some other companies go

above and beyond to stay on the bleeding edge of

technology. That is where docker and Kubernetes comes into

play. Docker is a container-based platform where a little

memory, storage, network is isolated to be then used by a

server or a service such as apache (httpd2.0), or NGINX

servers or may be a mail server like MailU. It goes above and

beyond the humble virtualization to bring improvements

such as isolation between the containers and a system

wherein an application inside a container fails, it is limited to

that particular container itself and does not affect other

healthy and running containers. Taking matters one step

ahead comes in Kubernetes, a container orchestration tool

which was initially built for the use of Google applications

by Google and then later released to be used by Dev-Ops

engineers worldwide, this came in advantageous to anyone

and everyone who started to implement Kubernetes in their

infrastructural considerations. It being open source and with

that came a large community of developers worldwide who

contribute to the betterment of the entire system. And also

support any fellow member of the community to obtain

guidance if and when a technical difficulty was encountered.

Hoping to learn and implement the rapidly pacing

Kubernetes technology, I bring to you a paper based on

Kubernetes which is just a scratch on the surface to what it is

truly capable of.

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 857

II. RELATED WORK

The Adoption of Microservice based architecture is for the

foreseeable future is ever expanding. In a way, this

architecture with its tiny, and modular nature conceptualized,

built deployed and scaled with dependency, however for a

large multinational corporate to move to a Microservice

based architecture remains a concern, with that being said,

Kubernetes provides a platform that breaks the normal

stereotype of how a microservice is thought after, it is an

open source platform that defines a set of building blocks

which provides a mechanism that can deploy, maintain, scale

and heal the containerized microservices. Thus, hiding the

complexity of the microservice orchestration while also

managing their availability.

III. METHODOLOGY

The work was carried out by setting up infrastructure on the

Google Cloud Platform (GCP). By using the Google

Kubernetes Engine (GKE) for the project. The deployment

process was carried out with the help of a Content Integration

tool called as Travis CI. And the Application which was

deployed to the cluster was a Fibonacci calculator which

used various other services to function. Various findings are

reported in the paper.

IV. PROBLEMS EXISTING IN THE CURRENT

ENVIRONMENT

The Architecture was built around just a virtual machine on

the web or a local server taking care of all the duties of

serving the front-end application, the database and other

dependencies however, this type of architecture introduced a

point of failure where, in case a failure occurred probably on

the front-end side where large volumes of influx requests

stalled the system, the entire server would be non-operational

and there would be no sure way of telling what in the system

which has failed. Simply put it was easily prone to

malfunction, this could totally mean downtime and losing out

on customers and in turn income.

V. PROBLEMS THAT ARE BEING ADDRESSED BY THE

MODERN IMPLEMENTATION.

Primarily the switch to containerization which paved the way

to better isolation of environments i.e. the front-end from the

database etc. Also, from each other which loosely translated

to being much fault tolerant and them failing on their own

environments and not pulling down other active services

along. Containers could be spun out extremely fast and all

that is necessary are the Docker file, Docker-Compose file.

Deployment file or automation scripts which are responsible

for defining the architecture and the environments within.

With the help of containerization, the applications have an

underlying environment often just to cater the needs of that

particular application and only it. The Container images built

using the several aforementioned techniques and are pushed

to docker hub repository for smooth deployment in the later

stages of the build. These images which are built are then

deployed on top of a cluster is managed by Kubernetes where

the containers reside as PODS. These PODS are managed

entirely by Kubernetes as in kills and re-generates the

environment when the running environment gets updated or

becomes unresponsive.

VI. DRAWBACKS OF EXISTING SYSTEM

The existing infrastructure consists of a local development

machine on which the deployable content is created and then

it is hosted on a web server either on premise or on a public

cloud such as Amazon Web Services or Azure. This

architecture is compact and is capable of handling lower

scale workloads such as for hosting a website for a start-up

or a small-scale industry which provides tools or drivers for

some of its services. However, this infrastructure is non fault

tolerant as in even when a small dependency such as an

update to the internal infrastructure would have the capability

to take it down the entire infrastructure without a hitch

causing downtime.

1. Existing Application/Environment

VII. PROPOSED SYSTEM

The Proposed System consists of containerization using the

most widely adopted docker platform on top of which the

whole architecture is implemented, Docker platform was

opted for the architectural design as it has significantly low

specification requirements for operation and the container

images used in this project are built using a bare minimum

version of Linux named as Alpine Linux which has a

maximum size of about 5MB. Along with other features such

as container level isolation, minimum overhead, security (as

containers cannot communicate amongst each other or be

aware of each other’s existence unless mapped by the

developer.), failure containment (in case of a failure fails in

its own container and does not affect any other service or

containers) and finally fault tolerance. To top it off,

Kubernetes the orchestration tool is designed and developed

by Google and is now backed by a large community ever

since it was made open source and available to everyone.

Kubernetes is used to orchestrate these containers built using

the images to enhance the replication as a part of fault

tolerance and load handling, pod (container) health

monitoring and appropriate actions taken care of by

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 858

Kubernetes to ensure that a service running inside of a pod is

completely healthy and if not take necessary actions such as

killing the failed pod and creating a new one. All Kubernetes

actions take place almost instantaneously so much so that the

end user would not notice any disturbance because of all the

background processes taking place all thanks to the agile and

fluent nature of Kubernetes.

2. Proposed Application/Environment

VIII. KUBERNETES

Kubernetes is a container orchestration tool for docker and It

is open source which loosely translates to having a lot of

support from the developers and the developer community.

It allows the user to schedule containers on a cluster of

computers or nodes as they are called, provides the user with

the option to deploy multiple containers on one machine.

Provides an opportunity to run long running services (e.g.

Websites). Kubernetes will manage the state of the deployed

containers, which means that it can start containers on

specific nodes, restart a particular container or containers

when they get killed either by accident, because of errors and

finally has the ability to move a container from one node to

the other without disrupting the overall work flow that

depends on the systems to be operational. One more

advantage of Kubernetes is that it can be run on-premise, on

a public cloud such as AWS or Google Cloud and also be

used to orchestrate hybrid compute architecture. Other

advantages of Kubernetes include Modularity, its open

source approach to availability and usage, great community

support from online forums such as Github and majorly

packs the greatest advantage of them all which is being

backed by the global technology giant Google.

Kubernetes object: They are persistent entitles in the

Kubernetes system, Kubernetes uses these entitles to

represent the state of the cluster, such as: the specific

containerized application is running and on which nodes, the

resources available to those applications, policies around

how these applications behave, such as restart policies,

upgrades and also fault tolerance.

Kubernetes API: When we specify the API version, that

scopes / limits the types of objects that we can specify that

we want to create within a given configuration file. This

essentially opens up the ability to access a pre-defined set of

different object types. Which would give us access to

Component Status, Configuration Mapping, End Points,

Event, Namespace and Pod. Unlike Docker which has

containers to house all the images and execute them,

Kubernetes makes use of a concept called the objects which

may be of the type deployment, service, volumes, Pods etc.

POD: Is the smallest deployment option to deploy a single

container, which also has the ability to run one or more

closely related containers within itself.

Services: Deals with a major portion of the networking

aspect for a Kubernetes cluster. These services are classified

into four major sub types which are:

a. Cluster IP: Assigns an IP address to the running

cluster so that we could access the services running

atop of the cluster.

b. Node Ports: Exposes a container to the outside

world (this type however is only used for

developmental purposes as exposing the actual node

ports would introduce a vulnerability).

c. Load Balancer: Handles the incoming and

outgoing network traffic.

d. Ingress: Exposes HTTP and HTTPS routes from

outside the cluster to services within the cluster.

Traffic routing is controlled by rules defined on the

Ingress resource.

Deployment: In order to deploy a Kubernetes cluster a set of

instructions should be issued to the Kubernetes master

stating the specific requirements and also the mapping within

the deployment file. This deployment file is written in

YAML and is either deployed to the Kubernetes cluster using

the dashboard or the command line interface. This

deployment file would be responsible for the deployment of

either a POD or service. On the master, there is a variety of

different programs that control the whole Kubernetes cluster.

We make use of the “kube-apiserver”, the kube api server is

wholly responsible for monitoring the current status of all the

different nodes which are inside the cluster and making sure

that they are all essentially doing the correct thing. The

master when given with a deployment file, makes a note of

all the responsibilities that are to accompany the following

deployment. So that is all the tasks, roles and responsibilities

that we assign to the master to handle / take care of by itself.

Consider this, when the master is handed over the task to

fetch deploy and monitor the master, it will make sure that

the service and pod which are configured are fault tolerant

and is operational even in case of failures which may or may

not be intentional. Any node created by the master is an

autonomous body and that they do not communicate with

other nodes but report directly to the master node and any

connection which needs to be routed is done by the master

itself.

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 859

The Deployment file: A deployment file is responsible for a

pod or a service, the deployment file is always fed to the

Kubernetes master using the KubeCTL command line

interface to Kubernetes master.

On the master, there are a variety of different programs that

control the whole Kubernetes cluster. Of which, we make use

of “kube-apiserver”. This server is a 100% responsible for

monitoring the current status of all the different nodes inside

the cluster and making sure that they are in complete

operational status.

The master when given with a deployment file, makes a note

of all the responsibilities defined inside of the deployment

file, so that all the tasks, the rules and the responsibilities that

we assign to the master to handle / take care of by itself.

Consider this, when the master is handed over the task to

fetch, deploy and monitor. It will follow the directions

provided to it and then make sure that a service which is

configured to be fault-tolerant is up and operational in case

of any failures (be it natural occurrence and simulated/

created). Any node created by the master is an autonomous

body un the sense they do not communicate with other nodes

but do report to the master node and any connection which

needs to be established is taken care of by the master. finally,

to deploy something, we update the desired state of the

master with a configuration file, to which the master

continually works to meet the desired state. When we create

a deployment object, it is going to have attached to

something called the pod template. The pod template is

essentially a block of configuration file which defines what

any pod that is created by this deployment should look like.

Any modifications done to the deployment object will reflect

the same changes on the running pods either by modification

or by killing the pod and creating a new one up to spec.

The deployment object will constantly watch all of the

different pods that It maintains, it is going to be watching

their state and making sure they are always in a correct state.

Which would be Active State out of all the states such as

Inactive, Non-Existent, killed, crashed, terminated. In the

deployment file metadata about the pods help identify them

better.

IX. DDATA STORAGE DESIGN

Starting with deployment, the build automation tool Travis

CI stores variables such as usernames and passwords in order

to access the docker images from docker hub as well as the

Cloud Web Services here the depicted environment is of

AWS. Using this Environmental variables, the application

could be successfully deployed. On Kubernetes cluster, for

the application to write data into the database, credentials are

required and so in comes the Kubernetes in-cluster

environmental variable setting where the password to access

the Postgres database is sourced from the environmental

variable instead of user input or hard coded plain text in the

application. Postgres is a database hosted inside of a

container which is encapsulated inside of a Kubernetes pod.

The above table describes the field and its type of value

which is to be ingested by the database.

Redis is an in-memory datastore and is hosted inside a

different container encapsulated in a different pod and it has

the ability to store data as key- value pair and hence stores

the index and the calculated value obtained after the

application performs Fibonacci operation.

X. PPHASED APPROACH

The Front End and the back-end code is written on a local

machine which is then moved to a containerized environment

and are then tested locally on Docker Desktop for operational

health. The Containers are then linked together by docker

networking locally using docker-compose and then tested for

its working. Once all the local testing is done, a repository is

created on Github and all the code for creation of containers,

the source code for the application itself and everything

related to is then committed and pushed to the previously

created repository. The deployment part of this process takes

place in phases, namely phase 1: where all the environment

on the cloud is set up. Phase 2: Set up a deployment

mechanism that would deliver the docker images. Phase 3

would be to set up a domain to the ip address exposed by the

cluster ip service.

In Phase 1, Cloud Instances and Its correspondent

environmental variables are set-up on TRAVIS CI and GKE.

In Phase 2. The script takes care of the rest of the automated

deployment and setting up process. However, there are a

certain aspect of the networking configuration which are to

be done by the developer.

In Phase 3, the remaining process is to associate a domain

name with the exposed ip that is given out by the internal

load balancer of the architecture and also the external load

balancer assigned to the cluster by the cloud provider.

XI. PPSEUDO CODE FOR KUBERNETES CONTAINER

CONFIGURATION

spec => Replica:3

matchLabels: => Component: Web

Template => Containers: => Image:

Image:<docker id>/frontend

Ports: 80

XII. CCONCLUSION

To conclude the paper, it can be said that the key objectives

which was to containerize an application and make use of

Kubernetes to orchestrate the entire infrastructure that was

built on a cloud platform was set to be achieved was

completed successfully. However, it is believed that this

paper barely scratches the surface of Kubernetes and its

potential which could be explored further by extensive study

and research.

 International Journal of Computer Sciences and Engineering Vol.7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 860

REFERENCES

[1] Jonathan Baier, “Getting Started with Kubernetes”, PACKT

Publishing, 2015

[2] Publishing Docker images,

https://www.howtoforge.com/tutorial/building-and-publishing-

custom-docker-images. (as on April - 2019).

[3] Kubernetes Concepts and Fundamentals,

https://kubernetes.io/docs/concepts/ (as on April - 2019).

[4] Docker- Stories, Accelerate digital transformation with docker,

https://www.hub.docker.com

[5] Multi Author, “YAML”, Tutorials Point, 2018

[6] Docker INC, “Introduction to Docker” , Docker Fundamentals

2cb8348, 2014

[7] Amazon Web Services Route 53 Documentation,

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/welc

ome-domain-registration.html

(as on April - 2019).

[8] Kubernetes Encryption before REST,

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

(as on April - 2019).

[9] Leila Vayghan, Mohamed Saied, Maria Toeroe, Ferhat Khendek,

“Kubernetes as an Availability Manager for Microservice

Applications”, Natural Sciences and Engineering Research

Council of Canada (NSERC) and Ericsson , October 2018.

Authors Profile

Mr. Mahesh G Prasad pursed Bachelor of Computer Applications
(BCA) from Dayananda Sagar Institutions affiliated to Bangalore
University, Bangalore in 2016 and will complete Master of
Computer Application from Jain University in year 2019.

Mr S Vignesh pursed Bachelor of Technology from Sri Vidya
College of Engineering and Technology affiliated to Anna
University in year 2009 and Master of Information technology from
MIT Anna university in year 2015 .He is currently working as
Assistant Professor in Department of IT, Jain University. He has
published research papers in reputed international journals available
online. His main research work focuses on Cryptography
Algorithms, Network Security, Cloud Security and Privacy, Big
Data Analytics, Data Mining, IoT and Computational Intelligence
based education.

https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

