@
AX]JCSE International Journal of Computer Sciences and Engineering [pen Access

Research Paper Vol.-6, Issue-6, June 2018 E-ISSN: 2347-2693

Numerical Simulation of Soret-Dufour and Radiation effects on Unsteady
MHD flow of Viscoelastic Dusty fluid over Inclined Porous Plate

N. Pandya® and R. K. Yadav®

L2Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India

“Corresponding Author: ravikant.yadav31@gmail.com
Available online at: www.ijcseonline.org

Accepted: 15/Jun/2018, Published: 30/Jun/2018

Abstract . The purpose of this paper is to present a numerical analysis of an unsteady three dimensional MHD flow of dusty
fluid past an infinite inclined porous plate. The Thermal diffusion (Soret), Diffusion thermo (Dufour) and radiation effects on
natural convection heat and mass transfer of viscoelastic fluid over a fixed inclined porous plate are presented. The governing
non-linear partial differential equations are transformed into a system of partial differential equations using similarity
transformations. After transformation the resulting equations are then solved numerically by the use of Crank-Nicolson implicit
finite difference method. Profiles of dimensionless velocity, temperature and concentration are shown graphically for various
values physical parameter like Prandtl number , Schmidt number , magnetic parameter , Hall parameter , Soret number, Dufour
number, Viscoelastic parameter radiation parameter, time , permeability parameter , dusty fluid parameter , dust particle
parameter , thermal Grashof number , solutal Grashof number , inclination angle . Skin friction coefficient, Nusselt number
and Sherwood number are discussed with help of tables.
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l. INTRODUCTION

In recent years, the MHD(Magnetohydrodynamics) flow of
viscous or viscoelastic fluid through porous media is
attracting towards itself due to it's quite prevalent in nature.
There are many viscoelastic fluids that cannot be
characterized by Maxwell’s or Oldroyd’s constitutive
relations. One such fluid is Walters’ (model B) viscoelastic
fluid which is used in biotechnology and industry. The
problems of the fluid dynamics involving dust, gas particles
mixture arise in many processes of practical importance. The
effect of dust particles on the viscoelastic fluid flow has
many applications as in the production of plastic products
like rayon and nylon, in the purification of crude oil, in the
pulp and paper industry, in the textile industry, in treating
environment pollution, in the petroleum industry, in the
purification of rain water etc.

Many authors have carried out the investigation of dusty
viscoelastic fluids under different conditions. Walters [1]
proposed a theoretical model for elastoviscous fluids. Rana
and Sharma [2] discussed

the thermosolutal instability of Walters’” (model B)
viscoelastic rotating fluid permeated with suspended particles
and variable gravity field in porous medium. Dholey et al. [3]
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analyzed the steady two dimensional stagnation point flow of
a walter’s-B fluid along a flat deformable stretching surface.
N. pandya and A. K. Shukla [4] studied effect of radiation
and chemical reaction on an unsteady Walter’s-B viscoelastic
MHD flow past a vertical porous plate. Pradeep Kumar [5]
investigated instability in Walters B’ Viscoelastic Dusty
Fluid through Porous Medium. Mahapatra et al. [6] analysed
an analytical solution of MHD flow of two visco-elastic
fluids over a sheet shrinking with quadratic velocity. Jena et
al. [7] studied chemical reaction effect on MHD viscoelastic
fluid flow over a vertical stretching sheet with heat
source/sink. Manoj et al. [8] investigated heat and mass
transfer effects on MHD viscoelastic fluid over a stretching
sheet through porous medium in presence of chemical
reaction. N. pandya and A. K. Shukla [9] studied effects of
thermophoresis, Dufour, Hall and radiation on an unsteady
MHD flow past an inclined plate with viscous dissipation.

The objective of this paper to examine the Soret- Dufour and
radiation effects on natural convection heat and mass transfer
of viscoelastic fluid over a fixed inclined porous plate are
presented. The governing non-linear partial differential
equations are transformed into a system of partial differential
equations using similarity transformations. The resulting
equations are then solved numerically using Crank-Nicolson
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implicit finite difference method. Profiles of dimensionless
velocity, temperature and concentration are shown
graphically for various values physical parameter. Skin
friction coefficient, Nusselt number and Sherwood number
are discussed with help of tables.

1. MATHEMATICAL ANALYSIS

An unsteady MHD flow of dusty fluid past an inclined
porous fixed plate in presence of Soret-Dufour effect, Hall
effect and radiation effect are considered. x' -axis is
considered along plate, y'-axis is perpendicular to itand z'-

axis is normal to x'y' plane. A uniform magnetic field By is
taken along y'-axis and plate is considered non-electric
conducting. In beginning plate and fluid are at same

temperature T and concentration C; . For t> 0,

temperature and concentration increase exponentially with
time. Magnetic Reynolds number is smaller than transversely
applied magnetic field so induced magnetic field is
negligible, Cowling[10].
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where u' and w' are velocities, J'y and J', are electric current
density along x'-axis and z'-axis respectively, m is Hall
parameter.

Because of infinite length in x' direction, flow variables are
function of t' and y' only. Under usual Boussinesq
approximation, governing equations of this model are given

by:
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where Sy is the stoke's resistance coefficient, v, is

viscoelasticity,& Ng is the number density of the dust
particles which is constant, m,< is the mass of dust particles,
K is the proportionality constant, u'y and w'y are the velocity
of dust particles along x'-axis and y'-axis respectively, A" is
coefficient of volume expansion for mass transfer, g is

volumetric coefficient of thermal expansion, v' is velocity
along y'-axis, K' is permeability of porous medium, o is
electrical conductivity, D, is molecular diffusivity, g is
acceleration due to gravity, Ky is thermal diffusion ratio, u

is viscosity, p is fluid density, k is thermal conductivity of
fluid, C' and T' are dimensional concentration and
temperature, (C_ and T, are concentration and

temperature of free stream, c, is specific heat at constant
pressure, g, is radiative heat along y'-axis, v is kinematic
viscosity and T, is mean fluid temperature.

Boundary and initial conditional for this model are given as:

t'<0 u'=0 w=0u,=0w,=0T'=T" C'=C', W'
t'>0 u'=u, w'=0 u\y=u, w,=0T'=T" +T'-T" )e™
C':C‘m+(C'W—C'%)e‘A" aty'=0
u'=0 w'=0 u\,=0 wy,=0 T'>T', C'>C', y'>w

©)
where T, and C', are concentration and temperature

2

. v,
respectively of plate and A=-2-.
v
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The radiative heat flux term after using the Roseland
approximation is given by

q 4o OT ™

r 3km ayl

(10)

where o and k,, are Stefan Boltzmann constant and mean
absorption coefficient respectively. in this problem

temperature difference within flow is very small, so that T **
may be expressed linearly with temperature. It is observed by

expanding in a Taylor's series about Tw' and considering

negligible higher order term, hence

4o 13 o 14
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so, by equations (10) and (11), equation (7) is reduced
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In order to obtain non dimensional form of governing
equations, we introduce following quantities:
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By introducing above dimensionless variables and constants
the Equations (3) (6), (8) and (12) converted as follows
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non dimensional boundary and initial conditions are:

t<0 u=0 w=0 u,=0 w;=0 #=0C=0 vy
t>0 u=0 w=0 u,=0 w,=0 f=¢" C=¢" aty=0
U=0 w=0 u;=0 w;=0 50C—>0 y->w

(20)

Now, many investigators have interest to calculate physical
quantities skin-friction coefficients z, and z, along wall x-
axis and z-axis respectively, Nusselt number Nu and
Sherwood number Sh. Non-dimensional form of these
physical quantities are:
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I1l. METHOD OF SOLUTION

Nonlinear coupled partial differential Equations 14-19 with
conditions 20 are solved by using Crank-Nicolson implicit
finite-difference scheme. Consider a rectangular region with
y varying from 0 to y max (= 4), where y max corresponds to
y = oo at which lies well outside the momentum and energy
boundary layers. According to Crank- finite-difference
equations corresponding to 14-19 are given by
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initial and boundary conditions are also expressed as:
Uo=0 Wo=0 (u,) =0 (W) =0 6,=0C,=0 Vi

Uy =0 Wo;=0 (ug) =0 () =0 G;=e C;=¢™

un,j =0 Wn,j =0 (ud )n‘j =0 (Wd )n,j =0 gn,j -0 Cn,i —0 (27)

The coefficient appearing in difference equations are treated
as constants. The Crank- Nicolson finite-difference equations
at every internal nodal point on a particular n-level constitute
a tri-diagonal system of equations. These equations are
solved by using the Thomas algorithm [11].

IV. RESULT AND DISCUSSION

The numerical values of the velocities , temperature,
concentration, skin-friction, Nusselt number and Sherwood
number are computed for different values of parameters like
Prandtl number Pr , Schmidt number Sc , magnetic parameter
M , Hall parameter m, Soret number Sr, Dufour number Du,
Viscoelastic parameter I' radiation parameter R, time t ,
permeability parameter K , dusty fluid parameter By, dust
particle parameter B, thermal Grashof number Gr, solutal
Grashof number Gm, inclination angle « .

It is observed in figures 1, 2, 21 and 22 that Soret number Sr
increases then velocities profile u, w and concentration
profile C increase while temperature profile € decreases. In
figures 3, 4 and 25, Schmidt number Sc increases then
velocities profile u, w and concentration profile C decrease.
It is observed in figures 7 and 8 that magnetic parameter M
increases then velocity profile u decreases and w increases.
In figure 9, Hall parameter m increases then velocity profile
u increases. It is observed in figures 26 and 27 that on
increasing viscoelastic parameter I" velocity profile u
increases near wall with good buoyancy effect after some
distance from wall u decreases and velocity profile w
increases.

On increasing radiation parameter R velocities profile u and
w increase in figures 5 and 6. Velocities profile u and w
decrease in figures 12, 13, 10, 11 as B; and B increase. It is
observed in figures 14 and 15 that inclination angle «
increases then velocities profile u and w decrease. In figures
16, 17 velocities profile u and w increase as time t increases.
On increasing Dufour number Du, temperature profile 4
increases in figure 18. Radiation parameter R increases
temperature  profile increases in figure 20 while
concentration profile C decreases near wall and after some
distance C increases in figure 19. On increasing time t in
figures 23 and 24 it is observed that near wall temperature
and concentration both decrease and after some distance
from wall both temperature and concentration increase.
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The numerical values of skin-friction coefficients 7, and 7,
are presented in table-1. From table, we observe that on
increasing dust particle parameter, dusty fluid parameter,
inclination angle and Schmidt number skin-friction
coefficients 7, and 7, both decrease. On the other hand skin-
friction coefficients 7, and z, increase as Hall parameter,
viscoelastic parameter and Soret number increase. skin-
friction coefficient 7, decreases as well as 7, increases when
radiation parameter increases. skin-friction coefficient z,
increases as well as 7, decreases as Dufour number

increases.

It is observed from table-2 Dufour number, Schmidt number
and radiation parameter increase then Nusselt number Nu
decrease and Sherwood number Sh increase. On other hand
Soret number increases Nusselt number Nu increases and
Sherwood number Sh decreases.
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Fig. 2: Velocity Profile w for Different Values of Sr
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Fig. 3: Velocity Profile u for Different Values of Sc
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Fig. 7: Velocity Profile u for Different Values of M
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Fig. 10: Velocity Profile u for Different Values of B
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Fig. 14: Velocity Profile u for Different Values of _
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Fig. 26: Velocity Profile u for Different Values of T’
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Fig. 27: Velocity Profile w for Different Values of T

V. CONCLUSION

The governing equations for unsteady MHD flow of dusty
viscoelastic incompressible fluid over a inclined porous plate
embedded in porous medium with Soret-Dufour, radiation
effects in the presence of transverse magnetic field was
formulated. The solutions for the model have been obtained
by using Crank-Nicolson implicit finite difference method.
The conclusions of the study are as follows:
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2) Concentration C decreses near plate and after some
distance to plate it increses when radiation parameter
increases.

3) Concentration C has major change near to plate when
Soret number increases.

4) There is interesting result in velocities u and w when
increase Soret number, we see that just near to plate for
all values of parameter there is good buoyancy effect and
after some distance there it is found normal change.

1) The velocity u increases when dusty fluid

parameter increases as well as velocity w also increases.
Table-1 Skin friction coefficients 7, and 7, for different values of parameters

Du r B B, |R M | m Sc Sr o t n 5
0.05 |0.0001 |1 1 2 1 |1 1 2 30 |02 2.90771 0.0691819
0.2 0.0001 |1 1 2 1 |1 1 2 30 |02 2.90298 0.0691736
0.6 0.0001 |1 1 2 1 |1 1 2 30 |02 2.88383 0.0691184
0.4 0.0009 |1 1 2 1 |1 1 2 30 |02 4.02911 0.0832609
0.4 0.0012 |1 1 2 1 |1 1 2 30 |02 4.81415 0.0912085
0.4 0.0015 1 1 2 1 1 1 2 30 0.2 6.11352 0.1021
0.4 0.0001 |0.01 |1 2 1 |1 1 2 30 |02 3.0193 0.0746572
0.4 0.0001 | 0.1 1 2 1 |1 1 2 30 |02 2.95464 0.0713422
0.4 0.0001 | 0.6 1 2 1 |1 1 2 30 |02 2.90023 0.0693746
0.4 0.0001 |1 3 2 1 |1 1 2 30 |02 2.65393 0.0585005
0.4 0.0001 |1 5 2 1 |1 1 2 30 |02 2.45129 0.0499247
0.4 0.0001 |1 7 2 1 |1 1 2 30 |02 2.27836 0.0429684
0.4 0.0001 |1 1 1 1 |1 1 2 30 |02 2.9253 0.0687585
0.4 0.0001 |1 1 3 1 |1 1 2 30 |02 2.88533 0.0697664
0.4 0.0001 |1 1 4 1 |1 1 2 30 |02 2.88483 0.0703953
0.4 0.0001 |1 1 2 3 |1 1 2 30 |02 2.74681 0.188975
0.4 0.0001 |1 1 2 5 |1 1 2 30 |02 2.60412 0.286691
0.4 0.0001 |1 1 2 7 |1 1 2 30 |02 2.46713 0.365218
0.4 0.0001 |1 1 2 1 |01 |1 2 30 |02 2.82707 0.0131049
0.4 0.0001 |1 1 2 1 108 |1 2 30 |02 2.8781 0.0667973
0.4 0.0001 |1 1 2 1 |15 |1 2 30 |02 2.92119 0.0649677
0.4 0.0001 |1 1 2 1 122 |1 2 30 |02 2.94145 0.0649677
0.4 0.0001 |1 1 2 1 |1 03 |2 30 |02 3.37776 0.0865514
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0.4 0.0001 |1 1 2 1 |1 06 |2 30 0.2 3.10436 0.0760051
0.4 0.0001 |1 1 2 1 |1 2 1 30 0.2 2.6012 0.0615142
0.4 0.0001 |1 1 2 1 |1 1 4 30 0.2 3.28418 0.0834197
0.4 0.0001 |1 1 2 1 |1 1 6 30 0.2 3.72682 0.0987155
0.4 0.0001 |1 1 2 1 |1 1 8 30 0.2 4.24291 0.115276

0.4 0.0001 |1 1 2 1 |1 1 2 15 0.2 3.22726 0.0771296
0.4 0.0001 |1 1 2 1 |1 1 2 45 0.2 2.36252 0.0564628
0.4 0.0001 |1 1 2 1 |1 1 2 60 0.2 1.67055 0.0399252
0.4 0.0001 |1 1 2 1 |1 1 2 30 0.1 2.07556 0.0263169
0.4 0.0001 |1 1 2 1 |1 1 2 30 0.3 3.33608 0.115328

0.4 0.0001 |1 1 2 1 11 1 2 30 0.4 3.5763 0.160296

Table-2 Nusselt number and Sherwood number Nu and Sh respectively for different values of parameters

Du r B|B |[R|M|m Sc Sr a t Nu Sh
0.05 0.0001 111 2 |1 1 1 2 30 0.2 | 0.440289 0.856995
0.2 0.0001 111 2 |1 1 1 2 30 0.2 | 0.420855 0.88549
0.6 0.0001 111 2 |1 1 1 2 30 0.2 | 0.359525 0.97767
0.4 0.0009 111 2 |1 1 1 2 30 0.2 | 0.392141 0.928242
0.4 0.0012 111 2 |1 1 1 2 30 0.2 | 0.392141 0.928242
0.4 0.0015 111 2 |1 1 1 2 30 0.2 | 0.392141 0.928242
0.4 0.0001 111 111 1 1 2 30 0.2 | 0.522893 0.754965
0.4 0.0001 111 3|1 1 1 2 30 0.2 | 0.327144 1.00505
0.4 0.0001 111 4 |1 1 1 2 30 0.2 | 0.286627 1.04896
0.4 0.0001 111 2 |3 1 1 2 30 0.2 | 0.392141 0.928242
0.4 0.0001 111 2 |5 1 1 2 30 0.2 | 0.392141 0.928242
0.4 0.0001 111 2 |7 1 1 2 30 0.2 | 0.392141 0.928242
0.4 0.0001 111 211 |01 1 2 30 0.2 | 0.392141 0.928242
0.4 0.0001 111 211 108 1 2 30 0.2 | 0.392141 0.928242
0.4 0.0001 111 2 |1 15 1 2 30 0.2 | 0.392141 0.928242
0.4 0.0001 111 2 |1 |22 1 2 30 0.2 | 0.392141 0.928242
0.4 0.0001 111 2 |1 |1 03 |2 30 0.2 | 0.426168 0.443568
0.4 0.0001 111 2 |1 |1 06 |2 30 0.2 | 0.41089 0.666976
0.4 0.0001 111 2 |1 1 2 2 30 0.2 | 0.346615 1.54392
0.4 0.0001 111 2 |1 1 1 4 30 0.2 | 0418271 0.554122
0.4 0.0001 111 2 |1 1 1 6 30 0.2 | 0.45458 0.0437638
0.4 0.0001 111 2 |1 1 1 8 30 0.2 | 0.509812 -0.71856
0.4 0.0001 111 2 |1 1 1 2 15 0.2 | 0.392141 0.928242
0.4 0.0001 111 2 |1 1 1 2 45 0.2 | 0.392141 0.928242
0.4 0.0001 111 2 |1 1 1 2 60 0.2 | 0.392141 0.928242
0.4 0.0001 1)1 2 |1 1 1 2 30 0.1 0.651856 1.41094
0.4 | 0.0001 111 2 |1 1 1 2 30 0.3 | 0.267512 0.688322
0.4 | 0.0001 111 2 |1 |1 1 2 30 0.4 | 0.19039 0.53439
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