
 © 2020, IJCSE All Rights Reserved 79

 International Journal of Computer Sciences and Engineering Open Access
Review Paper Vol.8, Issue.9, September 2020 E-ISSN: 2347-2693

Component Based Software Development using Distributed Objects

Sanjay E. Yedey

Department of Computer Science and Technology, DCPE, Amravati, INDIA

Author’s Mail id: sanjayeyedey@gmail.com

DOI: https://doi.org/10.26438/ijcse/v8i9.7984 | Available online at: www.ijcseonline.org

Received: 20/Aug/2020, Accepted: 05/Sept/2020, Published: 30/Sept/2020

Abstract- The Object Oriented Programming paradigm has revolutionized the process of software development. It provides

a great control over data and offers various revolutionary features like abstraction, encapsulation, polymorphism,

inheritance that facilitates reusability of previous efforts done to build softwares. This approach makes it possible to

develop softwares as reusable component that can be assembled with other. This software development paradigm makes it

possible to develop software applications based on „plug and play‟ in which we can add, replace or modify components

according to our needs. This Component Based Software development approach provides a cost effective, fast and modular

approach for developing complex software with reduced delivery time. The technologies that facilitate Component

development are distributed object technologies. The Distributed Object technology allows objects active in one process be

accessed by another facilitating the computation be split over multiple processes. The processes involved may be running

in different address spaces on single system or may be on different systems in a network in a local area network or the

Internet. The most popular distributed object technologies are CORBA, RMI and DCOM.

This paper presents an analysis of architecture and working of these technologies and compares software development

methodology in these technologies on the basis of key terminologies used such as data marshalling, interoperability,

heterogeneity, design transparency and speed.

Keywords- Software Components, Components based Software Development, Distributed Objects, CORBA, RMI,

Marshalling, Interoperability, Heterogeneity, Design Transparency

I. INTRODUCTION

Software development Software development process has

evolved a long way from traditional waterfall model to

highly manageable component oriented software. Earlier

softwares development was done using procedural

approach in which softwares were built by breaking

functional requirements into sub tasks and building a

software for each individual task. Later on the software

development process witnessed a big leap with the

introduction of object oriented paradigms. The Object

Oriented Programming System (OOPS) provided a

revolutionary approach where the main focus was on data

and entities rather than on functions. It provides a great

control over data and offers various revolutionary features

like abstraction, encapsulation, polymorphism, inheritance

that facilitates reusability of previous efforts done to build

softwares. This approach makes it possible to develop

softwares as reusable components. Each component

represents a set of services which can be assembled with

other [1,2]. This software development paradigm makes it

possible to introduce plug and play approach in building

software applications in which we can add, replace or

modify components according to our needs. This helps in

reducing software crisis and delivers robust software

products with faster delivery and reduced cost. The

advantage of this Component Based Software

Development approach is that it provides a cost effective,

fast and modular approach for developing complex

software with reduced delivery time. The code reuse in

designs allows taking advantage of the investment done on

earlier reusable components. Another advantage is that, a

software component can be developed and deployed

independently and is subject to be composed by third

party[3]. Components are built to be reusable which makes

development of further applications with similar

functionalities much easier. Components are

heterogeneous in nature in terms of programming

languages and platforms[4].

Characteristics of Component Based Systems

 Component-Based Architecture (CBA) is based on the

principle “Collaboration via Cooperation”, in which a set

of individual components, having their own goal,

contribute their efforts to collective bigger goal. Every

component is capable of functioning independently. A

big problem is decomposed into smaller sub-problems

and individual reusable software components are

designed to solve each of such smaller problems. The

Component based software design provides a higher level

of abstraction than that of Object Oriented Design

principles. Some of the major characteristics of CBA are

given below. The Figure-1 depicts these design

principles.

1. Reusability: The first and foremost characteristic of

CBA is that the components are designed to be reusable in

different applications, so that “Write once, Use

Anywhere” principle is achieved.

 International Journal of Computer Sciences and Engineering Vol.8(9), Sept 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 80

2. Extensibility: Components are designed in such a way

that, their capabilities can be extended without being

needed to disturb existing designs.

3.Encapsulation: Components advertise their capabilities

via interfaces which allow application developers to use

their functionality without revealing its proprietary or vital

details.

4. Independent: Each components is an individual and

independent unit, though it can be used in a society of

other components to achieve collective bigger goal .

5. Replaceable: If needed Components can be substituted

easily with other similar components with enhanced

capabilities.

6. Platform Independent: Components are designed to

function in heterogeneous environments, no matter in

which language they are developed and which platform

they get to operate in.

With the growth of the Internet and the advancement in

communication technology many applications useful in

our day to day life are made available on the internet and

are accessed at ease using portable devices like smart

phones and laptops along with micro to mainframe or even

supercomputers. This creates an environment of

heterogeneous distributed systems spread across all over

the world. The requests from large number of users create

a tremendous burden on the server, affecting performance

of the services on web server. Although a centralized

system approach facilitated by powerful systems like

supercomputer or mainframe computer was employed to

solve the problem at an early stage, it had its own

limitations with respect to aspects like bandwidth, traffic

congestion, reliability and even cost. The limitations made

client/server and distributed processing approach more

suitable[5,6]. Client/Server network uses a network

operation system designed to manage the entire network

from a centralized point, which is the server. Clients make

requests of the server and the server responds with the

information or access to a resource[7]. In addition, the fast

growth of a network performance has accelerated the

multiple computer approaches. A distributed processing is

widely used these days, especially in multi-tier

environments.

Among the distributed processing technologies, Remote

Procedure Call (RPC) [8,9] and Remote Method

Invocation (RMI) [10] exist as early models. However, as

the object oriented paradigms flourished, these models

have beenevolved into distributed object technologies. The

established off-the-self Distributed Object Technologies

include Microsoftt‟s s Distributed Component Object

Model (DCOM), Object Management Groupg‟s Common

Object Request Broker Architecture (CORBA) and that of

Java‟s Remote Methos Invocation(RMI)[11,12,13].

This paper describes the architecture and working of these

technologies along with advantages and disadvantages of

each technology, providing a guideline to the developers,

vendors, and practitioners to help them to choose an

appropriate technology to develop mission critical

application in distributed environment.

II. RELATED WORK

The principle idea behind Component Based Software

development approach is building applications from pre-

existing and precompiled software components that are

available in executable binaries or byte codes. Ivica C, Stig

L and Michel C [14], observes that, this idea has a big

impact on the system development lifecycle. First, the

developer has to separate system development process

from that of the components; the components should

already have been developed and possibly used in other

products when the system development process starts.

Second, the activities in the processes will be different

from the activities in non-component based approach; for

the system development the emphasis will be on finding

the proper components and verifying them, on the other

hand, for the component development, design for reuse

will be the main concern. Wallis, Henskens, Hannaford,

and Paul[15], found from a software development

perspective, it is observed that it is possible to re-use

existing Web components within the new distributed

component-based framework by wrapping them within

component interfaces. It is also possible that, once the

runtime environment and system-level components are

available, the developer needs only be concerned with

defining the interfaces and building the application-

specific components required for their application. The

runtime environment handles automatically the complexity

of the distributed nature in which the components are

executing.

Ivica and Magnus, [6] observes, since most applications

need to be modified from time and again as per changing

needs, the components utilized to build the application

must be maintained or replaced. The evolution of

 International Journal of Computer Sciences and Engineering Vol.8(9), Sept 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 81

requirements affects not only specific system functions

and particular components but also the overall component-

based architecture at every level. Increased complexity is a

consequence of different components and systems having

different life cycles. In component-based systems it is

easier to replace part of system with a commercial

component.

III. DISTRIBUTED SOFTWARE SYSTEMS

A distributed system consists of a collection of

autonomous computers linked by a computer network

equipped with distributed system software. This software

enables computers to coordinate their activities and to

share the resources of the system hardware, software and

data. Users of a distributed system should perceive a

single, integrated computing facility even though it may be

implemented by many computers in different locations.

This is in contrast to a network, where the user is aware

that there are several machines whose locations, storage

replications, load balancing and functionality are not

transparent[17,18]. Benefits of distributed systems include

bridging geographic distances, improving performance and

availability, maintaining autonomy, reducing cost and

allowing for interaction.

IV. DISTRIBUTED OBJECTS AS SOFTWARE

COMPONENT SYSTEMS

In distributed system technologies, the concept of

Distributed Objects’ refers to a technique in which

objects are distributed across different address spaces,

either in different processes on the same computer, or even

in multiple computers connected via a network.

Distributed object models and tools extend an object-

oriented programming system. These objects, though

active on different machines, work together in

collaboration by sharing data and invoking methods[18].

This communication often involves location transparency,

where remotely located objects appear the same as local

objects. The principal way of communication among these

distributed objects is by using „Remote Method Invocation

(RMI)‟, generally by message-passing. In message-

passing, one object sends a message to another object in a

remote machine or process to perform some task. The

results are sent back to the calling object.

The objects may be distributed on different computers

throughout a network, living within their own dynamic

library outside of an application, and yet appear as though

they were local within the application. This is the essence

of plug-and-play software. Several technical advantages

result from a distributed object environment. The overall

technical goal of distributed object computing is to

advance distributed information technologies so that they

may be more efficient and flexible, yet less complex[19].

The benefits of distributed objects are indeed solutions to

the problems with existing, monolithic client/server

paradigms.

A. CORBA

CORBA is part of the Object Management Architecture

(OMA), developed by OMG, which is also the broadest

distributed object middleware available in terms of scope.

It allows integration of a wide variety of object systems.

The basic OMA reference model from the OMG

specification presents CORBA architecture. The Object

Request Broker (ORB) component enables clients and

objects to communicate in a distributed environment[18].

Four categories of object interfaces use ORB to interact:

 Object Services are interfaces for general services that

are likely to be used in any program based on

distributed objects.

 Common Facilities are interfaces for horizontal end-

user-oriented facilities applicable to most application

domains.

 Domain Interfaces are application domain-specific

interfaces, which may also be a collection of different

Domain Interfaces such as Finance, Telecom,

Transportation, etc.

 Application Interfaces are non-standardized application-

specific interfaces.

The key component in OMA is ORB, or specified as

CORBA. From the above description, it is not hard to see

that ORB needs to provide the functions of delivering

requests to objects and returning any responses to the

clients targeted. As a distributed environment, ORB shall

also support the transparency requirement. CORBA

presents a nice architecture of an ORB, which handles a

series of jobs like object allocation, object implementation,

object execution state, object communication mechanisms,

etc. Following the CORBA architecture, most of the jobs

to delivery object communication are transparent. In this

sense, the four categories of OMA objects can be

connected to a CORBA ORB to form a distributed

computing environment without worrying about any of the

communication issues among them. Above Figure

demonstrates CORBA ORB architecture with its key

components. Here, we try to understand CORBA structure

through studying some of its key components. Some

features that are important to CORBA are also discussed

below.

B. DCOM V. DCOM is more or less an architecture

specification designed to be language-independent.

DCOM is primarily implemented on Windows platforms,

and specified by Microsoft [11,12]. Microsoft DCOM is

often called ``COM on the wire''. It supports remote

objects by running on a protocol called Object Remote

Procedure Call (ORPC).

A DCOM client calls into the exposed methods of a

DCOM server by acquiring a pointer to one of the server

object's interfaces. The client object then starts calling the

server object's exposed methods through the acquired

interface pointer as if the server object resided in the

client's address space. Since the COM specification is at

the binary level it allows DCOM server components to be

 International Journal of Computer Sciences and Engineering Vol.8(9), Sept 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 82

written in diverse programming languages like C++, Java,

Object Pascal (Delphi), Visual Basic and even COBOL.

As long as a platform supports COM services, DCOM can

be implemented on the platform. However, it is practically

not available except Windows systems.

C. RMI

An object-based programming language encourages a

methodology for designing and creating a program as a set

of autonomous components, whereas a distributed

operating system permits a collection of workstations or

personal computers to be treated as a single entity. Java

RMI provides an elegant and powerful model for invoking

member functions on objects that exist in remote address

spaces. Sun Java RMI is a built-in native ORB in Java

language. It supports making method invocations on

remote objects. From practical programming point of

view, developing distributed applications in RMI is

simpler than developing with sockets since there is no

need to design a protocol, which is an error-prone task. In

RMI, the developer has the illusion of calling a local

method from a local class file, when in fact the arguments

are shipped to the remote target and interpreted, and the

results are sent back to the callers. The underlying protocol

for RMI is Java Remote Method Protocol (JRMP).

Feature Analysis and Semantic Comparison: As

distributed object technologies the architectures of

CORBA, DCOM and Java/RMI provide mechanisms for

transparent invocation and accessing of remote distributed

objects. Though their objective and approach is more or

less same the mechanisms that they employ to achieve

remoting and many other issues with respect to their

central objective is a lot different. The Table-1 provides

detailed comparisons based on different aspects.

Comparison of Distributed Object Technologies based

on Component Development Metrics:

1. Base Interface (Base Type):

 DCOM: Every sever object implements IUnknown

interface

 CORBA: Every sever object implements

CORBA.Object

 JAVA RMI: Every server object implements

java.rmi.Remote

2. Interface Definition Language (IDL):

 DCOM: The Microsoft‟s MIDL DCOM interfaces.

The MIDL compiler creates proxy stubs for the client

and server

 CORBA: CORBA IDL defines the methods and

attributes of component interface The IDL compiler

creates proxy stubs for the client and server.t

 JAVA RMI: RMI defines interfaces in Java

language. RMIC compiler is used to compile and

create proxy stub and skeleton

3. Unique Identification

 DCOM: interface – an interface is uniquely

identified by an id called IID named implementation

of the server object is uniquely identified by id called

CLSID

 CORBA: interface – an interface is uniquely

identified by an interface name, named

implementation of server object is uniquely

identified by its mapping to a name in the

Implementation Repository

 JAVA RMI: interface – an interface is uniquely

identified by an interface name named

implementation of the server object is uniquely

identified by its mapping to a URL in the Registry

4. Remote Object Reference (object handle at run-time)

 DCOM: Uniquely identifies a remote server object

through its interface pointer, which serves as the

object handle at run-time

 CORBA: Uniquely identifies remote server objects

through object references (objRef), which serves as

the object handle at run-time

 JAVA RMI: Uniquely identifies remote server

objects with the ObjID, which serves as the object

handle at run-time.

5. Object Handle

 DCOM: Interface Pointer

 CORBA: Object Reference

 RMI: Object Reference

6. Remote Object Reference Creation

 DCOM: Generated by Object Exporter

 CORBA: Generated by Object Adapter

 RMI: Generated by the call to the method

UnicastRemoteObject exportObject (this)

7. Object and skeleton instantiation

 DCOM: Tasks like Object and skeleton registration

are performed by server program or handled

dynamically by the COM run-time system.

 CORBA: Tasks like Object and skeleton registration

are performed by

 RMI: Object registration is done through

RMIRegistry using Naming class. skeleton

registration is done by its instantiation on calling

UnicastRemoteObject.exportObject(this) method

8. Underlying Remoting Protocol

 DCOM: Object Remote Procedure Call(ORPC)

 CORBA: Internet Inter-ORB Protocol(IIOP)

 RMI: Java Remote Method Protocol (JRMP)

9. Object Activation

 DCOM: Client calls CoCreateInstance()it needs a

server object

 CORBA: Client binds to a naming or a trader

service when it needs server object

 RMI: Client calls lookup() on the remote server

object's URL name when it needs server object

10. Handle Mapping of Object name to Object

Implementation

 DCOM: Handled by the windows Registry

 CORBA: handled by the Implementation Repository

 RMI: Handled by the RMIRegistry

11. Type Information for methods

 DCOM: Stored in Type Library

 CORBA: Stored in Interface Repository

 International Journal of Computer Sciences and Engineering Vol.8(9), Sept 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 83

 RMI: Any type information is held by the Object

itself

12. Locating an object implementation

 DCOM: Handled by Service Control Manager

(SCM)

 CORBA: Handled using Object Request Broker

(ORB)

 RMI: handled Java Virtual Machine (JVM)

13. Parameter passing

 DCOM: All parameters passed between the client

and server objects are passed either by value or by

reference

 CORBA: All interface types are passed by reference.

All other objects are passed by value including

highly complex data types

 RMI: All objects implementing, “remote interfaces”

extending java.rmi.Remote are passed by remote

reference. All other objects are passed by value

14. Parameter Marshalling

 DCOM: Parameter marshalling is accomplished in

the stub code that is generated by the IDL compiler.

The client stub and server skeleton are responsible

for marshalling of parameters.

 CORBA: DCOM provides automatic marshalling

for primitive types and object references. For user

defined structures and structured arrays Custom

marshalling is preferred.

 RMI: RMI provides automatic marshalling of

predefined types. and object references.Serialization

is used for marshalling objects

15. Platform Independence

 DCOM: Runs on any platform having a COM

Service implementation available on it.

 CORBA: Runs on any platform having CORBA

ORB implementation available on it.

 RMI: Runs on any platform having Java Virtual

Machine implementation available on it

16. Language Independence

 DCOM: No

 CORBA: Yes

 RMI: No, Only JAVA.

17. Exception Handling

 DCOM: Runs on any platform having Java

Virtual Machine implementation available on it

 CORBA: Through Exception Objects

 RMI: Through RemoteException

18. Support for data and code reuse

 DCOM: Supports code reuse just by modifying the

registry entry, without needing to recompile code on

the client or server

 CORBA: Supports code reuse by writing CORBA

compatible new objects

 RMI: Supports code reuse through Object

Inheritense

19. Support for Multiple Inheritacne

 DCOM: Yes, at Interfaces as well as Object

implementation

 CORBA: Yes, at interface level

 RMI: Yes, at interface level.

20. Security

 DCOM: Provided by NT Security

 CORBA: Provided by CORBA Security

 RMI: RMI security is provided by java security API.

V. CONCLUSION

The Distributed Object Technologies offer the techniques

to develop softwares as ‘Reusable Components’. These

state of the art platform independent components which

interact with each other through implementation-neutral

interfaces allow us to develop software by assembling

them into a single workable application unit. The methods

of an object active on one machine can be accessed by

remotely located programs in a smooth, secure and

transparent manner. The two communication parties called

client and server programmes may be running on

heterogeneous platform both in terms of hardware as well

as software. This paper presented a analytical survey of

most popular Distributed Object Technologies, CORBA,

DCOM and RMI. The survey conducted with respect to

aspects like platform independence, language

independence, marshalling, reusability, remoting protocol,

security etc. and a comparison is presented which helps

choosing technology most suitable for one‟s application.

REFERENCES

[1] Szyperski C, “Component Software-Beyond Object-Oriented

Programming”, Addison-Wesley, 1998.

[2] Tassio V, Ivica C, Eduardo S A, Paulo A M, Yguarata C C and

Silvio R L M, “Twenty-Eight Years of Component Based

Software Engineering”, The Journal of Systems and Software,

111, pp. 128–

148, 2016

[3] Deepti N, Yashwant S C, Priti D and Aditya H, “An Analytical

Study of Component-Based Life Cycle Models: A Survey”, In

Proceedings of International Conference on Computational

Intelligence and Communication Networks (CICN), 2015

[4] Crnkovic I and Magnus L, “Component-Based Software

Engineering-New Paradigm of Software Development”, Invited

talk and report, MIPRO, pp- 523-524, 2001

[5] Guynes C and Windsor J, “Revisiting Client/Server

Computing”, Journal of Business & Economics Research

(JBER). 9. 10.19030/jber.v9i1.935. (2011).

[6] George C, Jean D, Tim K,”Distributed Systems: Concepts and

Design”, 5th edition, Addison Wesley, (2011).

[7] Namita V J, Snehal C P, Malhari R R, “Client Server Network

Management System for WLAN (Wi-Fi) with Remote

Monitoring”, IJSRNSC, Volume-1, Issue-1, Apr- 2013. ISSN:

2321-3256.

[8] A.M. Khandker ; P. Honeyman ; T.J. Teorey,”Performance of

DCE RPC”, Second International Workshop on Services in

Distributed and Networked Environments, 1995.

[9] Wesam A, Azzam S, Oraib A, Shatha Al-Asir, Shorouq

A, “Interactive RPC Binding Model”,European Journal of

Scientific Research 27:1450-216 · January 2009

[10] "RMI Unleashes the Highest Performing Multi-core Processor

and Product Family in the Industry, Driving System and

Performance Scalability". Press release. RMI. May 19, 2009.

[11] Fabian Breg, Shridhar Diwan, Juan Villacis, Jayashree B, Esra

Akman, Dennis Gannon Java RMI Performance and Object

Model Interoperability: Experiments with Java/HPC++

Distributed Components, December 2012

 International Journal of Computer Sciences and Engineering Vol.8(9), Sept 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 84

[12] J. D. Schoeffler, "A Model For Estimating Overhead in DCOM

and CORBA Function Calls", NASA Report, 1998

[13] Roger S C, Samuel T C, “Distributed, object-based

programming systems”, ACM Computing Surveys (CSUR)Vol.

23, No. 1, March-1991

[14] Ivica C, Stig L and Michel C, “Component-based Development

Process and Component Lifecycle”, Journal of Computing and

Information Technology-CIT 13, 2005, 4, 321-327.

[15] Wallis, Henskens, Hannaford, and Paul, “Implementation

and Evaluation of a Component-Based framework for

Internet Applications”, published in the journal IT in Industry,

vol. 5, no. 2, 2017 ISSN (Online): 2203-1731

[16] Anandi Mahajan and Pankaj Sharma, “Object Oriented

Requirement management Tools for maintaining of status of

requirements”, International Journal of Scientific Research in

Computer Science and Engineering Vol.6, Issue.6, pp.27-30,

December (2018) E-ISSN: 2320-7639.

[17] Ivica Crnkovic and Magnus Larsson,”Challenges of

component-based development”, published in the Journal of

Systems and Software,(2002) 201–212.

[18] Elfwing, R., Paulsson, U., and Lundberg L., Performance of

SOAP in Web Service Environment Compared to CORBA, In

Proceedings of the Ninth Asia-Pacific Software Engineering

Conference, IEEE, 2002.

[19] Remzi H and Andrea C, “Introduction to Distributed

Systems”, Arpaci-Dusseau Books, 2014.

AUTHOR’S PROFILE

Dr. S. E. Yede obtained Bachelor of

Science in Computer Science from

Rashtrasant Tukdoji Maharaj Nagpur

University, Nagpur, India in 1991

and Master of Science in Computer

Science from Dr. Babasaheb

Ambedkar Marathwada University,

Aurangabad, India in the year 1993.

He obtained his Ph.D. degree in Computer Science from

RSTM Nagpur University Nagpur in the year 2015.

He is currently working as Associate Professor, for Master

In Computer Application (MCA) at P. G. Department of

Compuer Science and Technology, from the year 1993

DCPE, affiliated to Sant Gadgebaba Amravati University,

Amravati. He is a Life member of ISTE since year 2005.

He has published more than 20 research papers in reputed

international journals and conference procedings. His main

research work focuses on Object Oriented Technologies,

particularly Distributed Object Systems and Intelligent

Agents. Recently he is working towards Big Data

Analytics, Data Mining, IoT and Computational

Intelligence based education. He has a vast experience of

more than 25 years of teaching at post graduate level and

more than 10 years of Research Experience.

