

 © 2020, IJCSE All Rights Reserved 73

 International Journal of Computer Sciences and Engineering Open Access
Survey Paper Vol.8, Issue.6, June 2020 E-ISSN: 2347-2693

DevOps: Concept, Technology and Tools

Pallavi Deshwal

1*
, Poonam Ghuli

2

1
Dept. of Computer Science, RV College of Engineering, Bangalore, India

2
Dept. of Computer Science and Engineering, R V College of Engineering, Bengaluru, India

*Corresponding Author: pallavideshwal7311@gmail.com, Tel.: +91-7060865539

DOI: https://doi.org/10.26438/ijcse/v8i6.7378 | Available online at: www.ijcseonline.org

Received: 22/May/2020, Accepted: 20/June/2020, Published: 30/June/2020

Abstract— DevOps is a new concept that consolidates development and operations team to intently incorporate

individuals, procedures and innovation for automated end to end delivery and deployment of software. DevOps Engineers

have start to finish obligation of the Application (Software) directly from gathering the prerequisite to improvement, to

development, to testing, to application deployment lastly checking and assembling input from the end clients, again

implement the changes as per end client requirements. This paper presents DevOps concept, how it has been evolved from

traditional methods, technologies involved such as CI/CD pipeline, project gating and DevOps tools that automates the

software development cycle.

Keywords— DevOps, CI/CD, Jenkins, Git, Docker, ZUUL, Artifactory, CI/CD Visualization Dashboard, JIRA, Valgrind

I. INTRODUCTION

The Time to Market of an item basically influences its

achievement particularly when discussing innovations,

which must be conveyed while they are still new. In such

condition, at that point, what truly separates the item on the

market isn't just the item itself, or its quality, yet in addition

the speed at which it can develop: for an organization,

taking the item to showcase quick intends to prevail upon

the contenders and being constantly lined up with new

inclinations [15].

As increasing popularity of agile methodology, DevOps

comes as an extension to agile where development and

deployment process is iterative. To reduce cost and time to

deploy a software, DevOps leads to iterative and repetitive

deployment. In this concept developers can deploy the code

they develop at faster pace and in shorter cycles. As this

software deployment process evolved from the traditional

methods to agile and then DevOps, use of these methods

have significantly increased over time. This research work

explains deeply CI/CD pipeline for continuous integration

and delivery, Git as source code management system,

Jenkins as an extensible automation server or CI server that

can lead to continuous delivery hub for any development

work, Zuul as project gating system, Docker as

virtualization technology, Artifactory for Artifacts

repository. CI/CD pipeline gives a wider picture of why in

DevOps everything is continuous: integration, testing,

deployment and delivery. CI/CD pipeline design is

displayed in Figure 1.

Rest of the paper is organized as follows, Section I contains

the introduction of DevOps concept deeply with Section II

contain background work, Section III contains how

evolution of software development procedure from

waterfall model to agile then later to DevOps happened,

Section IV contains technologies related to DevOps culture,

Section V contains tools to automate the process of

development in DevOps and Section VI concludes the

research work with future scope.

Figure 1. CI/CD Pipeline in DevOps [24]

II. BACKGROUND WORK

DevOps practices enables sharing of goals, incentive,

processes and tools [1]. DevOps integrates developers and

operations team to combine and collaborate individuals,

processes and technology for an automated delivery of

software which follows agile methodology, scalable and

cost-effective [2]. DevOps practices includes Continuous

Delivery and Deployment (CD), testing that is automated,

and code for infrastructure [3; 4]. DevOps reduces time

when developer commits a change and deploys that change

to without compromising the quality of software [4]. There

 International Journal of Computer Sciences and Engineering Vol.8(6), June 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 74

is high correlation among Continuous delivery and

deployment practices, and tight binding in which the

correct information for defining these practices is not

available [5; 6; 7]. Sometimes there are issues to make

difference between these practices and depends on how

any given organization integrates them [8; 9]. Continuous

deployment enables continuous delivery to gradually

deploy applications to production environment if checks

and automated tests are passed. In continuous delivery

practice, the management team takes decision about when

to deliver changes to customers, all steps or decisions in

continuous deployment are automated no manual steps are

used; once developers commits a change in code, the

change is deployed to production using a continuous

deployment pipeline [11]. How to apply these two

practices depends on source. Sometimes every type of

systems and organizations can practice continuous

delivery, continuous deployment but it may not suite to

every types of organizations [12; 13].

III. EVOLUTION

From Waterfall Methodology to Agile Methodology and

then to DevOps is a complete evolution towards software

development lifecycle and also to project management.

Waterfall model is oldest model and defines various steps

to develop a complete software. However conditions for

waterfall model are to complete one step of development

cycle before moving to next step. Figure 2 is waterfall

model architechture.

Figure 2. Waterfall Model [25]

Whilst due to speed and related issues with waterfall

models, Agile and DevOps were introduced to provide

flexibility. Agile methods enable product releases to be

delivered faster. Agile methodology is based on continuous

iterative sprints in Figure 3. Also, agile helps in faster

delivery of features with immediate feedback from

customer.

Figure 3. Agile Methodology [25]

DevOps optimizes the development process by integrating

development and deployment process together. DevOps

introduces agile methodology also, synchronizes with fast

iterative agile process of development with Ops process

testing and deploying to prevent from backlogs to happen

Figure 4.

Figure 4. DevOps Development Model [25]

DevOps is a methodology wherein conventional software

development steps are consolidated and upgraded to

improve the frequent process of production release and

keep up quality of software.

IV. TECHNOLOGIES INVOLVED

There are various technologies involved in DevOps

practices. Major technology is Continuous Integration/

Continuous Delivery (CI/CD) pipeline that integrates

different development stages. And project gating that

involves testing pipeline that ensures correct code changes

to be merged.

A. CI/CD Pipeline: CI/CD Pipeline enables the automation

of software delivery process such as initializing code

builds, automated testing, deployment to staging or

production environment. Automation pipeline helps in

removing errors that happens with manual process,

standardized feedback loops and enables fast production

iterations. CI stands for continuous integration and is a

software development process where all developers merges

their code changes in a central repository such as gerrit,

many times in a day. CI enables each code change to

trigger automated build and testing for the given software.

It provides feedback to developer who made the code

changes. CD stands for continuos delivery and adds

automation of complete software release process with

continuous integration.This process is completely

automated with logs which is visible to entire team

members.

Elements of CI/CD Pipeline:

1. Source Stage: In this stage developer pushes code

changes to source code repository that triggers a run in

CI/CD pipeline. Some common triggers can be

scheduled automatically or can be initiated by user as

well as by results of previous pipelines.

2. Build Stage: Build stage includes code compiling based

on languages that needs to be compiled. Some coding

languages do not require this step. Other cloud native

software deployment happens with Docker where this

step CI/CD pipeline (triggers) builds Docker containers.

If this build step fails that means, there is problem with

configuration of the project.

 International Journal of Computer Sciences and Engineering Vol.8(6), June 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 75

3. Testing Stage: In testing phase the code should pass

certain tests to validate if the code and behaviour of

project is correct. Developers writes these tests to

provide checks such as unit tests, integration tests, sanity

checks also entire system tests. Failure to pass this stage

reflects that developer should check for problems which

were not addressed while writing the code.

4. Deployment Stage: As soon as the instance of code is

runnable, and it has passed all required tests the

deployment is ready. There are certain deployment

environments such as staging and production.

Deployment in “staging” is done for production team for

internal use and, deployment in “production”

environment is for customer.

B. Project Gating: The elements of CI/CD Pipeline are

pillars of DevOps practices. If any mistake in these steps

that can lead to problems in development process. Project

Gating creates some testing approaches that product should

pass before it goes for deployment. These approaches

involves unit testing, integration testing, functional testing,

acceptance testing. Project Gating provides quality

assurance and readiness of software by placing these tests

to be passed by product to move ahead.

V. TOOLS

1. Jenkins: Jenkins is a tool that automates the

software delivery process and accelerate it. Jenkins is

called automation server for continuous integration and

continuous delivery environment. In Jenkins any language

for source code can be used and offers simple way for

setting up source code repositories as well as other

development tasks. Jenkins started from being a platform

for continuous integration then became a continuous

delivery platform. Jenkins automates the process of

building and testing. Jenkins as a CI tool automates

complete development process and reduces workload and

time for developer. Jenkins works as orchestrator to

perform certain development steps and to automate the

process. Architecture of Jenkins is distributed. Jenkins is a

web dashboard that where projects or jobs can be

configured and builds happens on nodes. Nodes are virtual

machines configured to run Jenkins jobs. Jenkins follows

master/slave architecture shown in Figure 5. Wherein

Jenkins server is called master. Nodes are called slaves.

Jenkins server also called master schedules the builds for

jobs and dispatches builds to slaves where actual execution

of builds happens. Master node also monitors of slave

nodes, records and presents build results.

Figure 5. Master/Slave Architecture of Jenkins [26]

Jenkins also supports tools for configuration management

such as Ansible, chef. Jenkins provides a variety of plugins

that supports various features for project configuration.

These plugins enable various tasks such as scripts

deployment, virtual machine launching and running

Docker containers virtual environment.

2. Git: A version control system provides a single

repository to store all files at one place. If there is a code

change it is needed that all codes are checked out that are

stored in repository. Whenever these changes in code

happen, changes are added to new version. Every time new

versions of files are stored when edits in code are done.

This enables to have a central repository of code from

where people can use this code. This also creates

challenges when centralized repository is shared with all

team members and code changes happen simultaneously.

Whilst distributed version control system provides facility

to share code across the team of developers. All the

developers maintain a local copy of code and all the time

keeps that code updated. Distributed version control

system facilitates that all the developers and clients share

the updated version of software. If there is any change in

code it is shared with all development team. Here comes

Git as a distributed version control system. Git is open

source and provides distributed environment for version

controlling. Git tracks source code changes. Git tool allows

developers to work simultaneously. GitHub as a remote

server facilitates source code management and

development team connect clients remotely to this server.

GitHub have some remarkable features such as commit

history, code review with pull requests, notifies via email

displayed in Figure 6. Git and GitHub can be integrated to

provide access to repository via internet. Git is a software

tool that can be installed on local systems, GitHub is a web

service. Git manages different versions of code. GitHub

facilitates shared repository on local systems. Git provides

better performance, more secure and flexible way of

version controlling.

Figure 6. Git Working Process [27]

3. Docker: Today application development takes

much more time than writing code for application. Every

 International Journal of Computer Sciences and Engineering Vol.8(6), June 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 76

stage of lifecycle requires multiple languages,

architectures, framework, deployment environment and

tools interfaces. Docker creates Linux containers. Docker

is a technology for virtualization and uses Docker engine.

Docker speeds up the workflow and facilitates developers

with their own tools, deployment environments and

application stack. Docker as a tool is designed for creation,

deployment and running applications using containers.

Containers are isolated virtual environment that provides

application as a complete packages, libraries and

dependencies to deploy. Docker benefits both development

and operations team as a part of DevOps toolchain.

Containers enables portability for applications. It is done

by containers by isolating code in one container, this also

makes updating code easy. Containers share Operating

System. Unlike Virtual Machines, containers virtualize

operating systems not hardware as in Virtual Machines.

Using containers code of application and dependencies can

be packaged together to provide deployment environment

for applications. On single shared OS kernel multiple

containers can be running in user space as isolated

processes. Containers enable more application to run than

in VMs and uses less space and need fewer Virtual

Machines and Operating Systems. Docker containers uses

less space, provides high speed to start-up and easier

integration.

4. CI/CD Pipeline Visualization Dashboard: In IT

industry, development and testing teams normally have a

lot of unique information dispersed and lying in various

frameworks. Because of an absence of visibility into the

CI/CD work process, it prompts poor discharge quality,

deferred cut-off times because of a more drawn out time

overlay from improvement to creation. What's more,

there's an absence of value checking of construct or

organization. Visualizing dashboard controlled Continuous

Integration/Continuous Deployment (CI/CD) enhances the

input circle with configurable dashboards that help

measure the exhibition, empowering speedy choices.

CI/CD totals information and utilizations representation

strategies to help battle the absence of a folded-up progress

of a project. With instinctive and configurable dashboards

CI/CD helps project workflow and the presentation

measurements or performance metrics at each stage. CI/CD

Dashboards gives a consolidated view of various

components of a project. It provides a simple way to view

all builds, tests, releases on a single page. This dashboard

can be used by both development and operations team to

have a view of project builds and related data at one place.

It also helps developers to have a view if code has broken.

Some dashboards provide facility to have performance

metrices based on all reports generated during

development and testing phases. These dashboards present

measurements on how your DevOps team functions and

can help distinguish present or potential issues in group

coordinated effort, application conveyance, and stage

health status. They additionally empower DevOps teams to

upgrade their capacities in zones, for example, quick

application conveyance, made sure about runtimes, and

automated CI/CD.

5. Zuul: Project gating process prevents changes

from being merged if the changes introduce regressions.

With this, working mainline can be open for all developers

and after the confirmation of a change that it will work

without any disruption, that change can be merged. Some

informal methods of gating are being practice for projects

wherein developers make sure to run a test suite when

commit happens in working mainline before this commit

merges. At a larger scale developer are more, changes are

more, and test cases are more these informal gating

practices does not scale well and becomes complex and

time consuming to handle. Zuul is a framework for project

gating that automates this process. Zuul can help to test

correctly the larger number of commits. It is a CI testing

tool that was developed in 2012. Essentially it was

designed to solve problems of developers of slower testing

when testing is serialized. Zuul came into picture as testing

tool then later it became automatic building, merging and

testing tool. Zuul provides automation process for merging,

building and testing any new change done to a project.

When code reviewing event happens it facilitates

automated tasks and running tests in response. Zuul also

introduced concept of co-gating, creating testing

environment for multiple shared repositories to make sure

test fails if any change breaks its project as well as test

should fail even if that change breaks any other projects in

that shared repositories. Zuul provides facility for multiple

users to make changes at same time enabling parallelism

features. Zuul knows where the tests should run and in

what order. Zuul ensures changes done parallelly should be

tested in correct order. Zuul have a dependent pipeline

manager to handle testing of changes done in parallel. If

any of the change done in parallel fails testing that should

be re- tested without failed change. If all succeeds all can

be merged once. Best case is when as many possible

changes are tested, passed and merged at once. Worst case

is when one change is tested at once. Zuul follows concept

of pipeline. For example, check, gate, post are some

pipelines of Zuul. And pipelines have triggers causing

projects to be enqueued in any pipeline. Zuul as a CI

project gating tool have various features and works as a

tool in DevOps toolchain.

6. Artifactory: A product by JFrog is a binary

repository manager. A binary repository is where the

Artifacts, which are created by build results, are stored. It

is a good practice to use a package manager for binary

repository. Artifactory is a manger for binary repository.

Different application components are stored, and these

components can be assembled together to create full

software product. This facilitates that any build can be

broken into small chunks, build times can be reduced, and

using resources efficiently. Artifactory can host both public

and private repository. Artifactory as a public repository

manager uses proxy. With this proxy the time to retrieve

Artifacts can be reduced and bandwidth can be conserved.

 International Journal of Computer Sciences and Engineering Vol.8(6), June 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 77

DevOps team uses Artifactory as a tool to manage binaries,

Artifacts, environment and distributed sites for project

workflow.

7. Valgrind: For QA (Quality Assurance)

perspective in DevOps Valgrind is used as a tool for

memory leak testing. Memory leak is when available

memory is lost by program that fails to return temporarily

used memory. Valgrind is a memory debugging tool and

works as a dynamic code analysis tool for DevOps.

Valgrind have different modules for analysis, main module

is Memcheck. Memcheck is used for memory leak

detection. It can detect different type of memory related

errors.

8. JIRA: For project management and issue tracking

DevOps toolchain have various tools one of them is called

JIRA. JIRA is a tool developed for tracking bugs and

issues. JIRA is a tool for project management. For software

and applications JIRA tracks all related bugs and issues.

Dashboard for JIRA have different features that enables it

to handle issues easily. JIRA tool for coding, team

collaboration and stages for release, works as a central hub.

JIRA across teams provides visibility and traceability for

information related to software. JIRA have various admin

related features that can be provides to users. Audit logs,

all information related to issues such as creating issues and

updating, is stored under audit logs. Mailing system in

JIRA can provide mail issues to be sent via external mail

service. JIRA have workflow for issues that provides issue

all stages and transitions issues go through such as open,

resolved, InProgress, Reopened and close. For DevOps

practices, all teams must use same issue tracking tool. It

provides more visible and responsive workflow. JIRA tool

also known as task management tool, as JIRA issues are

also called tasks. User stories are also added in JIRA which

are description about features developed. JIRA benefits

both software development and project management teams.

VI. CONCLUSION AND FUTURE

SCOPE

This paper explores all aspects of DevOps practices, how

DevOps integrates the development and operations team.

In this paper, we discussed how DevOps automates

complete software delivery process with the help of its tool

chain and that DevOps tool chain consists set of tools

which are used during complete DevOps cycle such as

continuous integration tool, monitoring tool, binary

repository manager, source code version control system,

dynamic analysis tool, issue tracking and project

management tool. This paper also presents that DevOps

facilitates quality assurance and team collaboration to

provide faster and cost-effective solution for software

development lifecycle. The major concern with DevOps is

to introduce and structure organization to adopt DevOps.

To embrace DevOps in organization with proper

structuring of organization and handling of DevOps role

are some areas for future research.

VII. ACKNOWLEDGMENT

We would like to express our deep gratitude towards our

Guide Dr. Poonam for her guidance, enthusiastic

encouragement, valuable and constructive suggestions

during planning and development of this paper.

REFERENCES

[1] M. Httermann, “DevOps for developers”, Apress Publisher, 2012.

[2] Jay Shah, Dushyant Dubaria and Prof. John Widhalm, “A Survey

of DevOps tools for Networking”, IEEE, 2018.

[3] “2015 State of DevOps Report”, Available at:

https://puppetlabs.com/2015- devops-report.

[4] BASS, L., WEBER, I., and ZHU, L., “DevOps: A Software

Architect's Perspective”, Addison-Wesley Professional

Publisher, 2015.

[5] FITZGERALD, B. and STOL, K.-J., “Continuous Software

Engineering: A Roadmap and Agenda”, the Journal of Systems

and Software, 2017.

[6] Chellamalla Mamatha, S C V S L S Ravi Kiran, “Implementation

of DevOps Architecture in the project development and

deployment with help of tools”, ISROSET, Vol.6, Issue.2,

pp.87-95, 2018.

[7] HUMBLE, J., “Continuous Delivery vs Continuous Deployment”,

Available at:

https://continuousdelivery.com/2010/08/continuous-delivery-vs-

continuousdeployment/ [Last accessed: 1 March 2016].

[8] LUKE, E. and PRINCE, S., 2016. No One Agrees How to Define

CI or CD. Available at: https://blog.snap-

ci.com/blog/2016/07/26/continuous-deliveryintegration-devops-

research/ [Last accessed: 1 August 2016]

[9] THIELE, A., 2014. Continuous Delivery: An Easy Must-Have for

Agile Development, Available at:

https://blog.inf.ed.ac.uk/sapm/2014/02/04/continuous-delivery-

an-easy-musthave-for-agile-development/ [Last accessed: 10

July 2016].

[10] WEBER, I., NEPAL, S., and ZHU, L., “Developing Dependable

and Secure Cloud Applications”, IEEE Internet Computing 20,

3, 74-79, 2016.

[11] DINGSØYR, T. and LASSENIUS, C., “Emerging themes in

agile software development: Introduction to the special section

on continuous value delivery”. Information and Software

Technology 77, 56-60,2016.

[12] MOONEY, M., “Continuous Deployment For Practical People”,

https://www.airpair.com/continuous-

deployment/posts/continuousdeployment-for-practical-people.

[13] REED, J.P., “The business case for continuous delivery”,

Available at https://www.atlassian.com/continuous-

delivery/business-case-for-continuousdelivery, [Last accessed:

12 July 2016].

[14] FORD, N., “Continuous Delivery for Architects”, Available at:

http://nealford.com/downloads/Continuous_Delivery_for_Archit

ects_Neal_Fo rd.pdf [Last accessed: 20 October 2016].

[15] Valentina Armenise, “Continuous Delivery with Jenkins”,

IEEE/ACM 3rd International Workshop on Release

Engineering, 2015.

[16] Nikita Seth,Rishi Khare, “ACI (Automated Continuous

Integration) using Jenkins: Key for Successful Embedded

Software Development“, Proceeding of the RAECS UIET

Panjab University ,Chandigarh, 21-22nd December 2015.

[17] Mojtaba Shahin, M. Ali Babar, Liming Zhu, “Continuous

Integration, Delivery and Deployment: A Systematic Review on

Approaches, Tools, Challenges and Practices”, IEEE, Received

February 16, 2017, accepted March 16, 2017, date of

https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuousdeployment/
https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuousdeployment/
https://blog.snap-ci.com/blog/2016/07/26/continuous-deliveryintegration-devops-research/
https://blog.snap-ci.com/blog/2016/07/26/continuous-deliveryintegration-devops-research/
https://blog.snap-ci.com/blog/2016/07/26/continuous-deliveryintegration-devops-research/
https://blog.inf.ed.ac.uk/sapm/2014/02/04/continuous-delivery-an-easy-musthave-for-agile-development/
https://blog.inf.ed.ac.uk/sapm/2014/02/04/continuous-delivery-an-easy-musthave-for-agile-development/
https://www.airpair.com/continuous-deployment/posts/continuousdeployment-for-practical-people
https://www.airpair.com/continuous-deployment/posts/continuousdeployment-for-practical-people
https://www.atlassian.com/continuous-delivery/business-case-for-continuousdelivery
https://www.atlassian.com/continuous-delivery/business-case-for-continuousdelivery
http://nealford.com/downloads/Continuous_Delivery_for_Architects_Neal_Fo%20rd.pdf
http://nealford.com/downloads/Continuous_Delivery_for_Architects_Neal_Fo%20rd.pdf

 International Journal of Computer Sciences and Engineering Vol.8(6), June 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 78

publication March 22, 2017, date of current version April 24,

2017.

[18] Pulasthi Perera, Roshali Silva, Indika Perera, “Improve Software

Quality through Practicing DevOps”, International Conference

on Advances in ICT for Emerging Regions (ICTer): 013 – 018,

2017.

[19] Jay Shah, Dushyant Dubaria, Prof. John Widhalm, “A Survey of

DevOps tools for Networking”, IEEE, 2018.

[20] Hessa Alfraihi and Kevin Lano,“The Integration of Agile

Development and Model Driven Development - A Systematic

Literature Review”, In Proceedings of the 5th International

Conference on Model-Driven Engineering and Software

Development (MODELSWARD 2017). SCITEPRESS, 451–

458, 2017.

[21] Gerald Schermann, Jürgen Cito, Philipp Leitner, Uwe Zduny,

Harald C. Gall, “An Empirical Study on Principles and Practices

of Continuous Delivery and Deployment”, PeerJ Preprints |

https://doi.org/10.7287/peerj.preprints.1889v1 | CC-BY 4.0

Open Access | rec: 22 Mar 2016, publ: 22 Mar 2016.

[22] Tony Savor, Mitchell Douglas,Michael Gentili, “Continuous

Deployment at Facebook and OANDA”, IEEE/ACM 38th IEEE

International Conference on Software Engineering Companion,

2016.

[24] Y. Sundman., “Continuous Delivery vs Continuous

Deployment”, 2013 [Online] Available: http://blog.

crisp.se/2013/02/05/yassalsundman/continuous-delivery-vs-

continuousdeployment

[25] Alexander Eck, Falk Uebernickel, and Walter Brenner, “Fit For

Continuous Integration: How Organizations Assimilate An

Agile Practice,” 2014.

[26] Amit Deshpande and Dirk Riehle, “Continuous Integration in

Open Source Software Development,” 2008.

[27] Daniel Ståhl and Jan Bosch, “Experienced Benefits of

Continuous Integration in Industry Software Product

Development: A Case Study,” 2015.

Authors Profile

Ms. Pallavi Deshwal pursed Bachelor of

Technology from Uttar Pradesh Technical

University, Lucknow, India. She is

currently pursuing Master of Technology in

Computesr Science and Engineering from

RV College of Engineering, Bangalore,

India since 2018. Her area of interest includes DevOps,

Data Science, Machine Learning and Big Data Analytics.

Dr. Poonam Ghuli has been working as

Associate Professor in the Department of

Computer Science and Engineering over

the past fifteen years at R V College of

Engineering, Bengaluru, India. She has a

couple of papers published in reputed

Journals and conferences. She is working in the area of

Data Analytics. She is actively involved in many

researches and consultancy work supported by renowned

companies such Citrix, Cisco, Samsung etc.

