

 © 2018, IJCSE All Rights Reserved 835

International Journal of Computer Sciences and Engineering Open Access

 Research Paper Vol.-6, Issue-5, May 2018 E-ISSN: 2347-2693

 Deriving Aggregate Results with Incremental Data using Materialized Queries

Sonali Chakraborty

1*
, Jyotika Doshi

 2

1
*
Gujarat University, Ahmedabad, Gujarat
2
 GLS University, Ahmedabad, Gujarat

*Corresponding Author: chakrabartysonali@gmail.com

Available online at: www.ijcseonline.org

18/May/2018, Published: 31/May/2018

Abstract— OLAP queries perform analytical processing on enterprise warehouse data. These queries are implemented using

aggregate as well as non-aggregate functions. Result extraction using OLAP queries involves traversal through huge number of

warehouse records. For repeated queries, processing time can be saved by storing queries along with its result and other

parameters like timestamp, frequency, threshold in relational database MQDB. With periodic data warehouse refresh,

incremental results for the frequent queries are processed using data marts and results are combined with existing results. This

paper depicts the methodology to derive results based on different aggregate functions giving the effect of incremental data.

Some aggregate functions may require other measures to be stored for compiling results.

Keywords— Data warehouse, Materialized queries, Aggregate functions, Deriving incremental results

I. INTRODUCTION

For decision making in an enterprise, management performs

analytical processing on large amount of warehouse data.

Data analysis is done by OLAP (Online Analytical

Processing) queries using various aggregate functions such

as average/ mean, sum, count, minimum, maximum,

variance, standard deviation. Generating results using data

warehouse is relatively time consuming as traversal through

huge number of records is done. For frequent OLAP queries,

query execution time can be reduced by storing queries

along with its results and metadata information such as

timestamp, frequency, threshold etc. [1][2][3]. When same

query is fired next time, it fetches results from MQDB in

case of no incremental updates [2]. This results into

significant reduction in query result retrieval time. In case of

incremental updates, only incremental records from data

warehouse are processed and existing results are combined

with incremental results [3]. Authors have suggested using

data marts [4] to store incremental data and process query

incremental updates.

When query involves aggregate functions, it requires some

processing to compute final result using existing and

incremental results. The method of compiling aggregate

results varies with the nature of function. Some functions

need additional measures to be used in computing combined

results. This paper depicts the process of deriving combined

results using existing and incremental results for queries

involving aggregate functions.

The paper is organized as follows: Section II deals with

related literature. Suggested methodology for deriving

results is explained in Section III while implementation of

the approach is illustrated with examples in section IV.

Section V concludes the research work.

II. RELATED LITERATURE

Dimitri Theodoratos and Timos Sellis [5] state that high

query performance and low view maintenance cost are in

conflict with each other. High query performance can be

obtained by storing in the data warehouse the results of all

the queries of interest. Here, maintenance cost of

materialized queries might be high. Authors suggested that

by materializing appropriately selected set of views in the

data warehouse, the total query processing cost and the view

maintenance cost can be kept at an acceptable level. The

authors discuss as how to select such set of views where the

solution is a negotiation between fully materializing all

queries of interest and keeping replicas of all base data

needed for answering the queries on the other hand. They

formulated the problem by determining set of views for a

given set of queries of interest against the data warehouse

such that all queries can be answered using this set of view

and the operational cost is minimal. The problem is modelled

using a state space search algorithm after representing the

views using multiquery graphs and with assumption that

there are no space restrictions in data warehouse.

Author P.Karthik et. al [6] discuss ways of tuning an

SQL query so that the time consumed by the query during

runtime is decreased. The optimizer predicts the cost of using

alternative access method used for resolving a particular

query using statistics on tables and indexes and finds the best

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 836

query plan in terms of I/O cost. The authors highlighted

certain rules for query tuning used in their project such as

rewriting the query using UNION instead of OR, replacing

relational operators using BETWEEN, using formulas

without attributes, avoiding join if not necessary, avoiding

DISTINCT keyword, same nested query and temporary

relations if not necessary and breaking a long query into

parts. Authors implemented the rules assuming non-parallel

or non-distributed database environment where database is

not geographically separated.

Authors Patrick O'Neil and Dallan Quass [7] observed

that OLAP queries with aggregates and grouping can be

evaluated using indexing and clustering. They introduced a

third index called Group set indexes using Bit-Sliced

indexing and Projection indexing.

Ziyu Lin et. al [8] discuss about the query contention and

scalability issue which deploys real time data warehouse

solutions. The contention between SELECT queries and

multiple inserts causes limitations to the scalability of the

data warehouse. The authors deal with this issue using multi-

level cache and depicted architecture called “dynamic multi-

level caches”. For any query arriving the system, it is

redirected to the corresponding cache for data access

depending on its requirements. Though query load is

distributed across multi-level cache instead of blocking one

cache it has to be updated with different length cycles

between real time and 24 hours.

Surajit Chaudhuri [9] quoted that the two key

components of query evaluation component are query

optimizer and query execution engine. He states that

execution of query optimizer is critical since throughput for

execution plans may vary. To solve query optimization

search problem, a search space, cost estimation technique

and an enumeration algorithm for searching through

execution space must be provided. He discusses the set of

algebraic transformations to preserve the equivalence in an

optimizer namely: commuting between operators, reduction

of multi-block queries to single-block, using semi-join

techniques for optimizing multi-block queries. He discussed

about the statistics and cost estimation for each plan in search

space by using statistical summaries of data but restricted the

consideration for memory resource. Also, this optimizer

technology is not discussed for Object oriented systems and

database systems using multimedia and web context for

fuzzy queries and decision support systems.

Prasan Roy et. al. [10] highlighted that many times

there are lot of common sub expressions in complex queries.

Authors addressed this problem of optimizing queries with

common subexpressions referred as multi-query optimization

which is based on AND-OR DAG query representation.

Greedy strategy picks the subexpression iteratively giving

maximum benefit i.e. reduction in cost if the subexpression

is materialized and reused. Their algorithm is restricted for

only single query with intra-query common subexpressions.

They have not considered multi query optimization of nested

queries as well as parameterized queries having different

parameter values.

Ashish Gupta et. al [11] introduce generalized

projections (GPs), an extension for eliminating duplicate

projections. The approach extends algorithms for SQL

queries using distinct projections to derive algorithms for

queries using aggregations like sum, min, max, avg and

count. They addressed a problem in data warehousing as how

to answer an aggregate query using materialized aggregate

views on base tables. Authors derived a transformation rule

by uniting with previous proposed transformation rules. The

new rules includes coalescing of multiple aggregate

computations into single computations, using arithmetic

inequality selection conditions introducing and eliminating

aggregate computations and pushing down aggregate

computations of a join. In this approach authors did not

consider correlated subqueries. Also they have considered

aggregates where the aggregate value can be computed from

aggregates over subsets. Example: average is calculated in

terms of sum and count.

Sara Cohen et. al [12] commented that evaluating a

view and then rewriting them will yield the same result as

evaluating the original query. Their proposed approach is

based on syntactic characterizations of the equivalence of

disjunctive aggregate queries. For a specific operator, several

types of queries using views as candidates for rewritings

have been introduced. Then the candidate is unfolded by

replacing each occurrence of a view predicates along with its

definition hence, obtaining a regular aggregate query. The

candidate will have more complex operator than the specified

operator. Authors considered unnested queries or views with

union, or using operators like min, max, count and sum.

Their approach is limited to unnested queries and views are

with union, and those employing operators like min, max,

count and sum.

Jonathan Goldstein and Per-Ake Larson [13] commented

that materialized views involving aggregate functions can

improve query processing time. They presented a fast and

scalable algorithm limited to only SPJG views to determine

if a part or all of a query can be computed from the

materialized views. A transformation based optimizer

generates all possible rewritings of a query expression, then

estimating their costs, and chooses the one with the lowest

cost. Rewritten query expressions are generated by applying

local transformation rules on subexpressions of the query. By

applying a rule substitute expression is produced equivalent

to original expression. One such transformation rule is view

matching i.e. computing a subexpression from materialized

views.

III. SUGGESTED METHODOLOGY

Executed OLAP queries are stored in relational database

MQDB (Materialized Query Database) along with other

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 837

parameters like results, timestamp, frequency, threshold and

number of records [1][2] [3].

For an equivalent query, incremental updates, if required, are

processed using data marts. Existing results are combined

with incremental results to generate updated results. Result

file and query metadata is updated.

OLAP queries might implement aggregate functions. The

behaviour of aggregate functions while compiling existing

and incremental results varies with aggregate functions.

Also, to regenerate aggregate measure using existing results

and incremental results, one may require storing other

measures as per need.

The methods using which aggregate results can be computed

are shown in Table 1.
Table 1 Methods for computing aggregate results

IV. IMPLEMENTATION

To understand the method of deriving aggregate results

using incremental results, we consider an example of an

organization providing education facilities all over India.

Data for the example considered here is collected from

http://censusindia.gov.in.

Consider the following instances of OLAP query with

reference to the collected data.

Query 1: Display total number of graduate females for

each state.

select dw_states.st_name, sum(dw_zones.graduate_f)

from dw_zones, dw_states

where dw_zones.st_code = dw_states.st_code

group by dw_zones.st_code

Query 2: List average number of males and females

pursuing technical diploma course for different age

groups.

select dw_age.age_value , avg (dw_zones.f_diploma), avg

(dw_zones.m_diploma) from dw_zones, dw_age

where dw_zones.age_id = dw_age.age_id

group by age_id

Query 3: Display the town and the state to which it

belongs having minimum number of literate males and

females.

select dw_states.st_name , min(dw_zones.literate_m),

min(dw_zones.literate_f)

from dw_zones, dw_states

where dw_zones.st_code = dw_states.st_code

group by dw_zones.st_code

Query 4: Find maximum number of illiterate and

below primary level males and females for each state.

select dw_states.st_name, max (dw_zones.m_illiterate), max

(dw_zones.f_illiterate),

max (dw_zone.m_belprimary), max

(dw_zones.f_belprimary)

from dw_zones, dw_states

where dw_zones.st_code= dw_states.st_code

group by dw_zones.st_code;

Query 5: Count the number of towns considered for

analysis for each state

select dw_states.st_name, count(dw_town.town_name)

from dw_town, dw_states

where dwt_town.st_code=dw_states.st_code

group by dw_town.st_code

Query 6: Find the deviation in number of females

pursuing primary education for each state

select dw_states.st_name, stddev(dw_zones.primary_f)

from dw_zones, dw_states

where dw_zones.st_code = dw_states.st_code

group by dw_zones.st_code

Query 7: Find the variance in number of below primary

education for males in each town.

select dw_town.town_name, var(dw_zones.belprimary_m)

from dw_zones, dw_town

where dw_zones.town_code=dw_town.town_code

group by dw_zones.town_code

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 838

A. Initialization

This phase generates identifiers for the tables, fields and

aggregate functions. It is executed during application load

time. Identifiers for tables and fields are application/ domain

specific. Generation of identifiers are depicted in detail in [1]

[2].

For the application discussed here, the identifiers defined are

as follows:

i. Table identifiers (table_name, table_id):

(dw_states, 01), (dw_town, 02), (dw_age, 03),

(dw_zones, 04)

ii. Field identifiers For illustration we depict field

identifier generation for table dw_states.

(field_name, field_id): (st_code, 01), (st_name, 02),

(entry_date, 03)

iii. Function identifiers (func_name, func_id): (sum,

01), (avg, 02), (min, 03), (max, 04), (count, 05),

(stddev, 06), (var, 07), (group by, 08)

B. Storing queries

Using the assigned identifiers as discussed in Initialization,

the queries are stored in “Stored_query” table of MQDB as

depicted in Table 2. Corresponding metadata information is

stored in “Materialized_query” table of MQDB shown in

Table 3.
Table 2 “Stored_query” table of MQDB [1][2][3]

sq_id query_id Table_id Field_id Func_id

sq1 q1 04 22 01

sq2 q1 01 02 00

sq3 q1 04 02 08

sq4 q2 03 02 00

sq5 q2 04 20 02

sq6 q2 04 19 02

sq7 q2 04 04 08

sq8 q3 04 07 03

sq9 q3 04 08 03

sq10 q3 01 02 00

sq11 q3 04 02 08

sq12 q4 04 05 04

sq13 q4 04 06 04

sq14 q4 04 09 04

sq15 q4 04 10 04

sq16 q4 01 02 00

sq17 q4 04 02 08

sq18 q5 02 03 05

sq19 q5 01 02 00

sq20 q5 02 02 08

sq21 q6 04 12 06

sq22 q6 01 02 00

sq23 q6 04 02 08

sq24 q7 04 09 07

sq25 q7 02 03 00

sq26 q7 04 03 08

Table 3 “Materialized_query” table of MQDB [1][2]

C. Processing equivalent queries with aggregate functions

When a query is fired, it is first searched in “Stored_query”

table of MQDB, for its equivalent query. Process to

determine equivalence between two queries is illustrated by

the authors in [1][2][3]. For processing incremental updates

of the query, data mart [4] is used. Existing results are

combined with incremental results to generate updated

results. Methods for combining existing results with

incremental results for queries involving aggregate functions

varies with the function as described in Table 1.

We illustrate deriving aggregate results using existing and

incremental results for Query 2 and Query 7.

Example 1: Compiling Average value for Query 2
Average value stored as existing result for Males and

Females pursuing diploma belonging to age_id = ‘g1’ is

664.42 and 681.40 respectively.

Incremental average value calculated using data mart for the

same criteria is 993.93 and 1112.83 respectively.
Hence combined average calculated using method discussed

in Table 1 is shown in Table 4.

Table 4 Combined average derived for Query 2

Gender n1 1 n2 Combined average

Males 722 664.42 43 993.93 682.94

Females 722 681.40 43 1112.83 705.65

Here, we need to stored n1 for each record in result file for

calculating combined average value. Result file for the query

with additional attribute will be as shown in Table 5.

Table 5 Updated result file for Query 2 with additional attribute (n)

Gender Average number

pursuing diploma

Number of

records (n)

Males 682.94 765

Females 705.65 765

Where,

Number of records (n) = total count of records considered

for calculating combined average value (n1+ n2)

Example 2: Compiling Variance for Query 7

Variance calculated 38065.39 for town name ‘Jaipur’

considering 30 entries is stored as existing result.

Incremental variance value calculated considering 20 new

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 839

entries for the same town from data mart is 14242.25.

Hence, deriving combined variance is shown in Table 6.

Table 6 Combined variance for Query 7

Hence, for deriving combined results for aggregate functions,

majorly for average, standard deviation and variance;

additional measures are required to be stored. Count of

records considered for calculating average value and average

value for calculating combined average in case of variance or

standard deviation needs to be stored in result file. In this

case, query result file with additional attributes is shown in

Table 7.

Table 7 dated result file for Query ith additional attribute n 1

Town

name

Variance for

below primary

male

Number of

records (n)

 rag

 a u 1

Jaipur 29419.24 50 279.436

Where,

Number of records (n) = total count of records considered for

calculating average value (n1+ n2)

Average value 1 ombined avera e calculated c

 1 is updated with new combined average every time

combined variance or combined standard deviation is

calculated)

V. CONCLUSION

Storing queries and then compiling existing and incremental

results, eliminates the need to traverse through huge number

of records in data warehouse. This significantly reduces

query execution time for frequent OLAP queries. For

deriving combined results related to aggregate functions

especially in case of calculating average, standard deviation

and variance, storing additional measures like count and

average value in result file is required

REFERENCES

[1] S. hakraborty and J. Doshi “Data Retrieval from Data Warehouse

Using Materialized Query Database ” International Journal of
Computer Sciences and Engineering, Vol.6(1), Jan 2018, E-ISSN:

2347-2693, pages 280-284.

[2] S. hakraborty and J. Doshi “Performance Evaluation of
Materialized Query ” International Journal of Emer in

Technology and Advanced Engineering, vol. 8, Issue 1, pages 243-

249, January 2018.
[3] S. hakraborty and J. Doshi “Materialized Queries with

Incremental Updates ” 3rd International Conference on Information

and Communication Technology for Intelligent Systems, Springer
Smart Innovation, Systems and Technologies (SIST). Series:

http://www.springer.com/series/8767. [Presented, Ahmedabad, 6-7th

April, In Press].

[4] S. hakraborty and J. Doshi “An Approach for Creating and
Maintaining Dependent Data Marts using Materialized Queries’

Information,” International Journal of Scientific Research in
Science, Engineering and Technology, vol 4, Issue 1, pages 1527-

1533, JanuaryFebruary,2018.

[5] D Theodoratos T Sellis “Data Warehouse
Configuration,”Proceedin s of the 23rd VLDB onference Athens

Greece, 1997.

[6] P. Karthik, G.Thippa Reddy, E.Kaari Vanan “Tuning the SQL Query
in order to Reduce Time Consumption ” IJ SI International Journal of

Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012, ISSN

(Online): 1694-0814.
[7] P O'Neil D Quass “Improved Query Performance with Variant

Indexes,” Proceedings of the 1997 ACM SIGMOD International

Conference on Management of Data, Pages 38-49.
[8] Z Lin, D Yang, G Song, T Wan “Dealing with Query Contention

Issue in Real-time Data Warehouses by Dynamic Multi-level Caches,”

Computer and Information Technology, 2007. CIT 2007. 7th IEEE
International Conference on Computer and Information Technology.

[9] S haudhuri “An Overview of Query Optimization in Relational

Systems ” PODS '98 Proceedin s of the seventeenth A M SIGA T-
SIGMOD-SIGART Symposium on Principles of Database Systems,

Pages 34-43.

[10] P Roy S. Seshadri S. Sudarshan S Bhobe “Efficient and Extensible
Algorithms for Multi Query Optimization ” Proceedin s of the 2000

ACM SIGMOD International Conference on Management of Data,

Pages 249-260.
[11] A Gupta, V Harinarayan D Quass “Aggregate-Query Processing in

Data Warehousing Environments ” Proceedin s of the 21st VLDB

Conference, Zurich, Swizerland, 1995.
[12] S ohen W Nutt A Serebrenik “Rewriting Aggregate Queries

Using Views ” Proceedin s of the ei hteenth ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, Pages 155-166.

[13] J Goldstein, P -A Larson “Optimizing Queries Using Materialized

Views: A Practical, Scalable Solution ” Proceedin s of the 2001 A M
SIGMOD International Conference on Management of Data, Pages

331-342, ISBN:1-58113-332-4.

Authors Profile

Sonali Chakraborty is an Assistant Professor
for MSc (CA & IT) at Gujarat University,
Ahmedabad, India. She has completed her
MSc (CA & IT) from Gujarat University,
Ahmedabad, India in 2007. She has 8+ years of
experience in the field of teaching. Her subjects
of interest include Data Warehousing and Data
Mining, Computer Graphics, Digital Image
Processing, E-commerce and E-governance. She is pursuing PhD in
the area of Data Warehousing from GLS (Gujarat Law Society)
University, Ahmedabad, India. She has published six research
papers in International Journals.

Dr. Jyotika Doshi is an Associate Professor for
MCA at Faculty of Computer Technology, GLS
University, Ahmedabad, India. She earned her
PhD in computer science from Gujarat
University, Ahmedabad; MCA from IGNOU,
Delhi; MSc(Statistics) from M. S. University,
Vadodara. She has 35+ years of experience in the
academic field and 3 years experience in software development
industry. Her research is in the area of Data compression. Her
subjects of interest are Data structures, Database management, Data
analysis, Parallel programming. She has published nearly 15
research papers in International Journals.

http://www.springer.com/series/8767

