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Abstract— Vehicle recognition finds wide-spread applications in analyzing traffic data, collecting electronic tolls and 

identifying unauthorized vehicles on roads, etc. Diverse methods have been developed for vehicle recognition and these 

methods give good results in controlled environment. However, variations of illumination, vehicle geometry and occlusion are 

frequent phenomena in real-world scenarios. Neural network proves effective in handling such variations. In this paper, we 

have investigated the effectiveness of single-layer neural network, multi-layer neural network and convolutional neural 

network (CNN) and deep CNN for vehicle detection using a standard Madrid dataset.  
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I.  INTRODUCTION  

Computer vision system shows tremendous success in 

various object detection and recognition. Vehicle is a 

common object whose recognition is very important in many 

applications, such as localization of license plate, toll 

collection, computer assisted driving system to reduce 

accidents on the roads. Due to some difficulties, such as 

noise, variations in illumination and geometrical shapes, 

vehicle recognition process is somehow challenging. Diverse 

methods [1-9] have been proposed. However, these 

algorithms have some flaws, such as low recognition 

accuracy and computational efficiency. Recently, neural-

based methods have been proposed to overcome the 

drawbacks of traditional approaches. This paper thoroughly 

investigates four types of neural network-based methods 

using a bench-marked dataset.   

The rest of the paper is described as follows. The working 

methodology is given in section 2. Experimental results are 

shown in section 3. Finally, section 4 concludes the paper.  

 

II. VEHICLE RECOGNITION TECHNIQUES  

There are different neural approaches for vehicle recognition, 

such as single-layer neural network, multi-layer neural 

network, convolutional neural network (CNN) and deep 

CNN. A brief description of these techniques is given below. 

 

A. Single Layer Neural Network  

A single-layer neural network (SLNN) [10] consists of a 

single neuron with adjustable synaptic weights connected to 

input features and a thresholding activation function, such as 

step, bipolar and sigmoid functions. This neural network can 

be treated as a linear neural network, as it linearly classifies a 

two-class object. Usually, MSE (Minimum Squared Error) 

by steepest descent minimization procedure is used for 

training a single layer neural network.  

B. Multi-Layer Neural Network 

For solving non-linear recognition problems, we use multi-

layer neural network (MLNN). Back propagation (BP) 

algorithm is used for training such a MLNN. In this neural 

network, the layers are fully connected, that is, every neuron 

in each layer is connected to every other neuron in the 

adjacent forward layer [11]. There are two sweeps for 

MLNN in BP algorithm for weight updating: forward sweep 

and backward sweep. 

In the forward sweep, the input stimuli are given to the 

network, the network computes the weighted average from 

all the input units and then passes the average through an 

activation function. The activated outputs will go the 

intermediate (hidden) layers and finally, go to the output 

layer.  In backward sweep, the error is calculated at the 

output layer and then that error backs to the hidden layers 

(prior to input layer).   

C. Convolutional Neural Network (CNN) and Deep 

CNN 
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A convolutional neural network [12, 13] consists of basically 

three layers, which are described below.  

i. Convolutional Layer 

In convolutional layer, the convolution operation is executed 

to produce a feature map on the input data with the use of a 

filter or kernel. To calculate the convolution, the kernel is 

swept on the image and at every single location calculated 

the output. Thus, the convolutional layer just performs a two-

dimensional image convolution operation using a weighted 

convolution kernel. Figure 1. describes a convolution 

operation of an image with a convolutional mask/kernel. A 

mathematical expression of convolution operation is given in 

Eq. (1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii. Pooling Layer 

After performing a convolutional operation, we have a 

pooling layer. This layer takes input (feature map) from the 

convolutional layer and reduces it to a single output based on 

pooling kernel. The pooling operation is done for shortening 

training time and controlling the overfitting situation. 

Generally, 3 mechanisms are used for pooling operation, 

which are average or maximum (max) or minimum (min). In 

this research, max-pooling is used that takes the maximum of 

the block region. 

The max-pooling converts a k×k region into a single value 

output, which is the maximum in that region. For instance, if 

the input layer has N×N regions, then the output will be 

k

N

k

N
 regions, that means each k×k block is converted to 

just a single value via the max-pooling operation. 

iii. Fully Connected Layer 

After performing operations on convolutional and max-

pooling layers, the high-level reasoning for recognition is 

done in the fully connected layer. A fully connected layer has 

full connections with all neurons in the previous layer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In deep CNN, there are many layers (number of layers ≥ 3) 

[14] instead of a single convolutional-layer and a pooling-

layer. 

The architectures of SLNN, MLNN, CNN and deep CNN are 

shown in Table 1. 

Input Image, f Kernel, k Feature Map, g 

10 30 20 15 40 

25 15 45 20 5 

35 5 25 55 32 

15 20 10 10 30 

22 13 10 30 20 
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Figure 1. Convolution operation in CNN. 
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 SLNN MLNN CNN Deep CNN 

Input Size 224×224 227×227 224×224 224×224 

Conv. Layers 0 1 1 8 

Filter Size 3 3 3 3 

Stride 1, 2 1, 2 1, 2 2 

FC Layer 1 1 1 3 

 

TABLE 1. A BRIEF ARCHITECTURES OF SLNN, MLNN, CNN AND DEEP CNN 
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III. EXPERIMENTAL RESULTS 

To develop and test the experiment of our research, we have 

used The Polytechnic University of Madrid vehicle database 

[15]. 

The University of Madrid vehicle database consists of 

7325 images of which 3425 images are vehicle (class 0) and 

3900 images are road sequences (class 1) not containing 

vehicles. The vehicle images are basically the taken from 

rear and captured from different points of view. The images 

of the database consist of four different regions (according to 

the pose): middle/close range in front of the camera, left, 

middle and far respectively. In addition, the images are 

extracted in such a way that they do not perfectly fit the 

contour of the vehicle in order to make the classifier more 

robust to offsets in the hypothesis generation stage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The images are recorded in highways of Madrid, Brussels 

and Turin with 64×64 and 360×256 pixels resolutions.  

Among the images of this Madrid database 6225 images are 

used for training and 1100 are used for testing. Figure 2 

shows some sample vehicle images of Madrid database. 

In deep CNN, we use input image size 64×64, convolution 

mask size 5×5, max pooling mask size 2×2, so in the fully 

connected layer the input size becomes 32×32. Tables 1 to 5 

show the confusion matrix for SLNN, MLNN, CNN and 

deep CNN, respectively, for Madrid databases. From these 

tables we find that deep CNN shows the best recognition 

among the investigated methods.  For clarity, accuracies of 

different methods are shown in Table 6. Figures 3 to 6 show 

the visual results of some sample images for SLNN, MLNN, 

CNN and deep CNN, respectively, for Madrid databases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

   

   

 
Figure 2. Sample images from Madrid database 
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 Figure 3. Recognition result of some sample vehicles of Madrid DB by using SLNN. The images of (a) and 

(c) are correctly recognized while (b) and (d) are not recognized correctly. 
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 Actual Class 

Predicted Class 

 Vehicle Non-vehicle 

Vehicle 517 33 

Non-vehicle 44 506 

 

TABLE 2. CONFUSION MATRIX OF MADRID DB USING SLNN. RED COLORED FIGURES INDICATE 

TRUE RECOGNITION. 
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Figure 4. Recognition result of some sample vehicles of Madrid DB by using MLNN. The images of (a), (c) 

and (d) are correctly recognized while (b) is not recognized correctly. 

 Actual Class 

Predicted Class 

 Vehicle Non-vehicle 

Vehicle 544 6 

Non-vehicle 28 522 

 

TABLE 3. CONFUSION MATRIX OF MADRID DB USING MLNN NEURAL NETWORK. RED COLORED 

FIGURES INDICATE TRUE RECOGNITION 

 Actual Class 

Predicted Class 

 Vehicle Non-vehicle 

Vehicle 550 0 

Non-vehicle 14 536 

 

TABLE 4. CONFUSION MATRIX OF MADRID DB USING CNN. RED COLORED FIGURES INDICATE TRUE 

RECOGNITION. 
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Figure 5. Recognition result of some sample vehicles of Madrid DB by using CNN. The images of (a), (b) 

and (c) are correctly recognized while (d) can’t be recognized by CNN (Vehicle = 0 and Non-vehicle = 1). 

Figure 6. Recognition result of some sample vehicles of Madrid DB by using deep CNN. All images are 

correctly recognized by Deep CNN (Vehicle = 0 and Non-vehicle = 1). 
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TABLE 5. CONFUSION MATRIX OF MADRID DB USING DEEP CNN. RED COLORED FIGURES INDICATE 

TRUE RECOGNITION. 

 Actual Class 

Predicted Class 

 Vehicle Non-vehicle 

Vehicle 550 0 

Non-vehicle 6 544 
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IV. CONCLUSION  

Vehicle recognition is a challenging task that has grabbed 

great attention for its overgrowing demands in a variety of 

applications in several domains recently. In this paper we 

have investigated the effectiveness of four neural network 

variations. Among these, Deep CNN shows the highest 

accuracy 99.4%.  
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