

 © 2018, IJCSE All Rights Reserved 1080

International Journal of Computer Sciences and Engineering Open Access

 Review Paper Vol.-6, Issue-6, June 2018 E-ISSN: 2347-2693

Comparative study of GFS, HDFS and Gluster FS

Anupom Chakrabarty

1*
, Chandan Kalita

2

1*

Department of Information Technology, Gauhati University, Guwahati, Assam, India
2
Department of Information Technology, Gauhati University, Guwahati, Assam, India

*Corresponding Author: anupom.chakrabarty@gmail.com, Tel.: +91-9613518605

Available online at: www.ijcseonline.org

Accepted: 06/Jun/2018, Published: 30/Jun/2018

Abstract— Distributed file system is an essential part of data intensive works as it is used as a primary storage solution.

Distributed file system also provides distributed environment of processing for fast and effective processing of large set of data.

Over the years, there are a number of DFS has been developed. All the DFS are designed to handle a large set of data

efficiently, so that users can access the data quickly regardless of how the data are stored. For a user it becomes hard to choose

one against a number of available DFSs. A thorough study about the DFSs will definitely guide users to choose their favorable

DFS in their applications. In this paper, we give a brief description about GFS, HDFS and GlusterFS and then compare them

on some fundamental issues of DFS such as scalability, transparency and fault tolerant.

Keywords— DFS, GFS, Hadoop, HDFS, GlusterFS, EHA

I. INTRODUCTION

Distributed file system is a network attached file system

where a number of machines are interconnected through

networks. It gives the solution of easy scalability, efficient

performance and reliability. It has been used as a solution to

variety of applications such as weather forecasting,

aerodynamic research, space operations, big data, GIS data

analysis etc that have a large amount of data and require

distributed environment to process that data. Again with the

increasing use of internet, there is a sharp rise in digital data

across various internet platforms. The digital data are in the

form of search keywords, images, document files, videos,

GPS locations etc that do not have any definite structure. So

to store, manage and process the structured and unstructured

data the concept of big data come into the picture. Big data

requires scaling up the storage as the amount of data rapidly

increases as well as need to provide low latency for handling

that data for any analytical work [1]. Some leading big data

practitioners are Google, Facebook, Apple, Microsoft etc.

which use hyper scale storage environment.

As the number of distributed file system increases, it becomes

important to do a thorough and comparative study of the

DFSs to guide the users to choose the best DFS. A distributed

file system should be scalable, transparent and fault-tolerant.

In this paper, we do a comparative analysis of GFS, HDFS

and GlusterFS, to know how they address scalability,

transparency, fault tolerant issues.

Google was the first one to face the problem of big data. To

handle the problem of big data Google come up with GFS

(Google file system) [2]. It is an easily scalable distributed

file system to handle large amount of data [2]. GFS is

designed with most of the common goal of distributed file

systems with some assumptions, such as use of low cost

commodity hardware, frequent failure of hardware etc [2].

A well known open source Apache Hadoop project[3] also

include similar kind of module named Hadoop distributed

File System(HDFS) to store large amount of data in a scalable

commodity hardware. The Apache Hadoop's key

components- MapReduce[8] and HDFS[4] are originally

derived from Google's GFS[2].

Similarly Gluster File System is an open source network

attached file system with the easy provision of scale up the

storage as well as the processing power [7][10]. Gluster file

system aggregate the storage servers connecting through

ethernet or infiniband RDMA in a one larger parallel network

storage file system [7].

The rest of the paper is organized as following: section II

discusses about the design, background details of GFS,

HDFS and GlusterFS distributed file system. Section III

gives a brief analysis of the DFSs and presents a comparison

among the DFSs on some fundamental issues of DFS. In

section IV we draw a conclusion.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1081

II. BACKGROUND WORK

It is very difficult to make a thorough study given the

number of DFSs available. Here we do the choice of DFSs

according to their popularity and used in production

purposes: GFS, HDFS and GlusterFS are some of them. The

basic details about GFS, HDFS and GlusterFS are as shown

below-

1. GFS

The Google File System is a scalable and highly fault

tolerant distributed file system for large distributed data-

intensive applications. It was designed based on the need

from application workloads and technological environment at

Google [2].

1.1. Architecture

GFS is a centralized distributed file system. It is composed of

a master node and a number of chunk nodes that are run on

commodity hardware. The data are split into a numbers of

fixed size chunks and are stored across the chunk servers [2].

The master node maintains a Meta data that include file

system namespace and also the mapping of chunk servers

and their states. The master node is the central part of the file

system. Any failure in the master node makes the whole

cluster unavailable. To avoid this single point of failure a

shadow master node is maintain and has the same data that of

the master node.

1.2. Naming

In GFS the namespace is handled by the master node. Here

the files are divided into number of chunks and are stored in

the chunk servers. Thus the file to chunk mapping is needed

and are stored in the namespace [2]. The namespace is

consisting of Meta data and hierarchy of files and directories.

1.3. Replication and Synchronization

In GFS, files are divided into chunks and are stored in the

chunk servers. To increase the reliability, the chunks are

replicated across the whole system according to replication

policy. The default replication number of a chunk is 3. While

doing the replication the load balancing of the whole rack [2]

is taken into consideration. A rack is consisting of a number

of chunk nodes. Normally, a chunk node can hold only one

copy of a chunk, and a rack can hold two copy of the chunk.

Since the chance of node failure is higher than that of the

complete rack.

1.4. Fault detection

All servers in GFS are fully connected and are communicate

with each other to detect any problems such as network or

any server failure and to keep the system secure and

available. At startup each chunk node communicates with the

master node to check whether it belongs to the chunk node

list. If they do not then the chunk nodes are shutdown and

thus maintain the integrity of the system. Each chunk nodes

sends heart beat [2] to the master node to conform its

availability. The master node considers a chunk node as

unavailable if it does not receive any heart beat for a definite

time period. Heartbeats also provide statistical information

(such as storage capacity, number of data transfers in

progress etc.) to the master node so that it can make

decisions for load balancing.

2. HDFS

HDFS is the Hadoop distributed File System under Apache

license 2.0 developed by the Apache Software foundation

[3]. HDFS is designed to be highly fault tolerant since it is

implemented in commodity hardware.

2.1. Architecture

HDFS has a number of similarities with GFS when we take

architectural part into consideration. It is a centralized

distributed file system where the namespace is managed by

the Name node. The files are divided into fixed size blocks

and are distributed and replicated across the data nodes. A

secondary name node is provided and is a persistent copy of

the name node. In case of name node failure, the namespace

can be retrieve successfully from the secondary name node.

2.2. Naming

HDFS supports traditional hierarchy of file organization

namespace. HDFS handles its namespace using inode

concept which contains metadata such as permissions, space

disk quota, access time etc. The namespace and the metadata

are maintained by the name node. Any changes in the file

system or its properties are recorded by the name node.

2.3. Replication and Synchronization

HDFS is designed to be reliable to store large set of data

across a cluster of data nodes. To avoid loss of data because

of data node failure, blocks are replicated across the clusters.

The number of replication and size of blocks are

configurable. HDFS uses rack aware replica placement

Figure 1. GFS Architecture

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1082

policy to improve the reliability, availability and network

bandwidth utilization. A rack is a cluster of data nodes.

Normally a HDFS cluster is configured with replication

number 3, and in a rack no data node can have more than one

copy of a block and a rack as a whole can hold only two

copies of the block. Since the chances of whole rack failure

is far less than that of a data node failure. The whole

replication is maintained and monitored by the name node.

A heartbeat is a signal send to the name node by the data

nodes after a fixed interval of time to inform about their

availability. A block report contains the list of all blocks in a

data node. If name node detects any block is under or over

replicated, then it instruct the data node to take the

appropriate operation.

In HDFS data are replicated asynchronously. We can access

the data while replication is underway. This improves the

accessibility of data, but inconsistency occurs if modification

is done before the synchronization is completed.

2.4. Fault detection

At startup each data node compares its registered namespace

id with that of the name node. If no match found then the

data node is shutdown, thus preserve the integrity of the

system. Data nodes send heartbeats to the name node

periodically to inform their availability. A network partition

can cause the data node loss connectivity with the name

node. Name node detects this by the absence of heart beat

and thus does not send any I/O operations to the data nodes.

3. GlusterFS

GlusterFS[10] is an open source distributed file system

developed by the Gluster core team. It cluster together the

storage building block over Infiniband RDMA or TCP/IP

interconnect [7], aggregate the disk storage and memory

resources and manage the data in a single global namespace.

3.1. Architecture

GlusterFS is a network attached file system with the easy

provision to scale up the system. It has a client server design

with no central Meta data server. It stores data and Meta data

on different nodes connected across the servers. Each node

exports a directory which is called a brick. A set of bricks

from different connected nodes creates a logical volume. The

system can be configuring to stripe the data into blocks and

then store or replicate the blocks across the different

volumes. The Meta data for the files are stored across the

system. Thus the system does not have any central part.

3.2. Naming

GlusterFS does not maintain Meta data in a dedicated

centralized server, thus does not have any single point of

failure. Instead GlusterFS locate any file using Elastic

hashing algorithm (EHS) [7]. It systematically locates a file

solely based on their name using EHA. EHA uses a hash

function that converts the file path name to a fixed sized,

uniform and unique value. Thus we can access a file using

that unique value only.

3.3 Replication and Synchronization

GlusterFS does not replicated data one by one as compare to

other file systems. It relies upon RAID. It makes several

copies of the whole storage and then replicated them other

storages inside a same volume using synchronous writes.

Since replication in GlusterFS is done synchronously, files

cannot be access until all the files are synchronized

successfully.

3.4. Fault detection

In GlusterFS when a server is not available, it is removed

from the system and no I/O operation is done to that server.

The Meta data in GlusterFS are replicated across the whole

servers. Thus the system is free from single point of failure.

Figure 2. HDFS architecture

Figure 3. Architecture of GlusterFS

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1083

III. ANALYSIS AND COMPARISON

The aim of analyzing GFS, HDFS and GlusterFS is to know

how they address the scalability, transparency, fault tolerant

issues of a distributed file system.

All distributed file system must face with the increasing

number of client request, I/O operations and storage of

different sized files. So DFS must be design with the easy

provision of scale up the system in term of processing power,

storage capacity. Scalability is the ability of any DFS to

efficiently and dynamically increase the performance by

addition of servers to the system.

In distributed file system, users do not need to know about the

underlying complexity of the system (such as system design,

data locations, fault detection etc.). The user should able to

access the system regardless of their location and to do the

same set of operations on the DFS as they do on any local file

system.

Failures are consider as a norm rather than exception in case

of distributed file system. So a DFS should not stop

functioning in case of any transient or partial failure. The

failure can be network or any server. There should always be

a provision to maintain data integrity, consistency of the

system in case of any failure.

In the next section, we discuss about GFS, HDFS and

GlusterFS on the basis of scalability, transparency and fault

tolerance and give a brief comparison among the DFSs.

1. Scalability

In GFS and HDFS we can scale up the storage capacity by

adding new servers to the system as many as we want. The

metadata (namespace, mapping from files to blocks/chunks)

of both the DFS is handled by a single dedicated server. So

there is a natural limitation on amount of client request the

system can process at a time. HDFS loads the metadata on the

memory of the namenode to increase the performance of the

system. But this limits the number of files can be store in

distributed file system. This is the reason why GFS and

HDFS are suitable for storing small number of large sized

files.

On the other hand GlusterFS is distributed the metadata on

each and every machines of the system. Thus GlusterFS can

implement distributed request management [7]. The storage

and the client request handling capacity can be scale up by

simply adding new servers to the system. Unlike GFS and

HDFS, GlusterFS can handle both small and large sized files

smoothly.

2. Transparency

All the DFS provide various mode such as web based,

command line based interface to access the system. The users

do not have to know about the underlying complexity of the

system to use it. Again DFS should detect any failure in the

system before that affect on the users performance. For the

detection of failure different type of methods such as

periodical message sharing [3] within the nodes are used.

In GFS and HDFS, the files are divided into blocks and are

stored in the data/chunk nodes. The mapping of a file to their

blocks, called indexing, is then maintained in the master

node/namenode [2][5]. User can access the file with the

correct index values. HDFS uses heart-beat signals to known

about the availability of data nodes. All data nodes

periodically send heart beat signals to namenode to inform

about their availability. If the namenode does not receive any

heart beat from a particular data node for a definite duration

of time then the namenode consider the data node as

unavailable and thus removes the node from the list.

In GlusterFS there is no definite index is maintained for any

file. A user needs to calculate the file location using Elastic

hashing algorithm (EHA). The metadata servers only provide

the require information for the algorithm to calculate the

location of a file.

4. Fault Tolerance

Due to the distributed nature failures in distributed file

system are treated as usual rather than as exception. The

failure may be network or any server, but a DFS should be

capable of handling the failure and should ensure the

availability, integrity and consistency of data.

GFS and HDFS are two examples of centralized file system.

Here the master node/namenode is responsible for

maintaining metdata of the file system. Thus failure of

metadata server makes the whole cluster unavailable. Hence

for GFS and HDFS, the metadata server is the single point of

failure. To overcome this problem, GFS and HDFS maintain

another metdadata server called secondary master

node/namenode [2][5], which is the replica of master

node/namenode. Again to avoid any accidental loss of data

due to data/chunk node failure, data blocks/ chunks are

replicated across the data nodes and racks. The default

replication factor for GFS is 3 which can be change and for

HDFS we can configure it according to our need. HDFS uses

asynchronous replication due to which inconsistency arises in

data. To solve this problem HDFS uses WORM mechanism.

That is write once and read many times. GlusterFS is a highly

available distributed file system. Since the metadata and data

are distributed across the nodes, there is no single point of

failure. And also if any node becomes unavailable, it does not

affect the availability of data. GlusterFS replicated data

synchronously.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1084

IV. CONCLUSION

Distributed file system is used as a solution to store and

process large set of data. All the DFSs are designed to adopt

the increasing client request, storage capacity and also

maintain the system transparency, fault tolerance. All the

DFSs handle the transparency and fault tolerant issue almost

the similar ways. The main difference lies in their design. In

GFS and HDFS, we can easily increase the storage capacity

of the system by adding new node to the cluster. But the

whole metadata (namespace of the file system) is handled by

a single namenode/master node. This results in performance

limitation and single point of failure. Again in GlusterFS,

due to decentralized architecture the metadata is distributed

across the system. So, there is no single point of failure. In

GFS and HDFS the files are divided into blocks and the

indexing (mapping of blocks to file) are maintained by the

namenode/master node. In GlusterFS there is no definite

indexing is maintained. The locations of the files are

calculated by an algorithm. In GFS and HDFS the replication

of data are done asynchronously. This enhances the overall

performance of cluster. Again in GlusterFS replication is

done synchronously. Files cannot be accessed until all the

files synchronized successfully. From all these information

we can conclude that distributed file system should be

chosen according to the user’s requirement.

REFERENCES

[1] Snijders, C., Matzat, U., & Reips, U. D. (2012). " Big Data":
big gaps of knowledge in the field of internet science.
International Journal of Internet Science, 7(1),1-5

[2] Ghemawat, S., Gobioff, H., & Leung, S. T. (2003). The Google
file system (Vol. 37, No. 5, pp. 29-43). ACM

[3] Shvachko, K.; Hairong Kuang ; Radia, S. ; Chansler, R. " The
Hadoop Distributed File System". Published in: IEEE 26th
Symposium on Mass Storage Systems and Technologies
(MSST), Incline Village, NV, May 2010. Page(s): 1 - 10. E-
ISBN: 978-1-4244-7153-9. Print ISBN: 978-1-4244-7152-2.
INSPEC Accession Number: 11536653. D.O.I:
10.1109/MSST.2010.5496972. Link:
ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6308241

[4] Borthakur, D. (2008). HDFS architecture guide. Hadoop
Apache Project, 53

[5] K. Shvachko, H. Kuang, S. Radia and R.Chansler, “The
Hadoop Distributed File System”, IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), (2010) May
3-7: Incline Village, USA.

[6] Claudia Hauff, “Big Data Processing”, 2013/14 Lecture 5
(Web Information Systems).

[7] An introduction to Red Hat Gluster Storage architecture.
(2015). Retrieved April 20, 2018, from www.redhat.com:
https://www.redhat.com/en/files/resources/en-rhst-gluster-
storage-tech-detail-11395347.pdf

[8] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data
processing on large clusters. Communications of the ACM,
51(1), 107-113.

[9] Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010,
May). The hadoop distributed file system. In Mass storage
systems and technologies (MSST), 2010 IEEE 26th
symposium on (pp. 1-10).

[10] E. B. Boyer, M. C. Broomfield, and T. A. Perrotti. GlusterFS One
Storage Server to Rule Them All. echnical report, Los Alamos
National Laboratory (LANL), 2012.

Sl no GFS HDFS GlusterFS

1 Architecture Centralized

Centralized Decentralized

2 Naming Handled by the master node.

Data are divided into blocks

and their indexing is stored in

master node

Handled by the namenode.

Data are divided into blocks

and their indexing is stored in

namenode

Meta data are distributed across

the clusters. Files are located

using EHA algorithm

3 Replication Asynchronized and automatic

replication

Asynchronized and automatic

replication

Synchronized replication

4 Failure Single point of failure Single point of failure Highly available due to

distributed nature

Table 1. Comparison of DFSs

 International Journal of Computer Sciences and Engineering Vol.6(6), Jun 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1085

Authors Profile

 Anupom Chakrabarty received his B.E. degree

from Gauhati University and currently

pursuing M.Tech degree at Department of

Information Technology, Gauhati University,

Guwahati.

Chandan Kalita currently works at the

Department of Information Technology,

Gauhati University. His research work is in

File System/ Non Volatile Memory. His

recent research interests are Distributed File

System, NOSQL, Big data.

