

 © 2018, IJCSE All Rights Reserved 1055

International Journal of Computer Sciences and Engineering Open Access

 Review Paper Vol.-6, Issue-5, May 2018 E-ISSN: 2347-2693

Implications of Software Testing Strategies at Initial Level of CMMI: An

Analysis

R. Sharma
1*

, R. Dadhich
2

1
 Department of CSI, University of Kota, Kota, India

2
Department of CSI, University of Kota, Kota, India

*Corresponding Author: rekha_vivek@yahoo.com

Available online at: www.ijcseonline.org

Accepted: 18/May/2018, Published: 31/May/2018

Abstract - Software Testing is an essential and important phase of SDLC. The quality and acceptance of any software highly

depends on the success of software testing phase. The successful completion of testing phase also ensures that the produced

software is of good quality. In order to achieve high quality product lots of Process Maturity Models have been developed and

CMMI is one of the most popular among them. The organizations at the initial level of CMMI (also non-CMMI compliance

organizations) neither implement any of the standard processes for software product development nor they use any software

testing strategies, hence, the quality of the product produced by them is always susceptible and imposes a great risk over its

acceptance as well as on their survival. The main driving force behind this paper is to study the implications of software testing

processes (partially or at introductory level) over the quality of software produced by the organizations at initial level.

Keywords- Software Testing Strategies, CMMI, Maturity Levels, Capability Levels, Process Areas

I. INTRODUCTION

In testing phase of Software Development Life-Cycle

(SDLC), software is executed in order to verify that it is

performing correctly in terms of logic as well as

functionality; and most importantly that the software is built

according to users’ requirements and exhibits its intended

purposes. In the present era of software development, the

increasing complexity of infrastructure and supportive

technology makes it almost impossible to develop a 100%

defect-free product. The rapidly emerging technologies

demand extra efforts as well as cost to develop software that

supports diverse operating platforms running all over the

world. Capability Maturity Model Integration (CMMI) is

widely accepted as an Industry standard for the

improvement of process used to develop and deliver

software. It suggests various process areas grouped into two

representations: Staged and Continuous. The

implementation of standard CMMI is not feasible for small

organizations and start-ups because it demands extra

resources like time, budget and man-power. Since such

organizations are already struggling to survive with limited

resources, therefore, they strongly avoid implementing

CMMI or any other process improvement models. The

proposed study takes its motivation from the challenges

faced by small organizations (more importantly by Start-

ups) in developing and verifying the quality of software

being developed in the absence of well-defined processes.

This paper deals with the engineering process areas relevant

to software testing only, which are available at maturity

level 3 of the staged representation of CMMI and proposes a

new model for Start-ups.

In this paper three key terms of software engineering are

discussed i.e., a) software testing & strategies, b) CMMI &

its representation, and c) CMMI Process Areas related to

software testing. The complete paper is divided into 8

different sections. Section I introduces about the background

of proposed work under study. Section II summarizes the

related research work. Sections III, IV and V discuss

Software Testing & Strategies, the CMMI & its

representations, and Observed limitations of ML-1

respectively. The CMMI process areas related to software

testing are discussed in section VI. The implications of

software testing strategies at initial level of CMMI are

presented in Section VII, whereas section VIII shows the

conclusion of the analysis.

II. RELATED WORK

Many researchers have worked till now and are still working

on Process Maturity Models. A. Luqman [4] conducted a

study for the analysis & implementation of CMMI’s

Configuration Management (CM) process area in support

category while adopting its continuous approach. His work

suggested that the adoption of CMMI will drive the CM

towards continuous process improvement of enterprise

business for more reliable delivery of software products. P.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Paula%20Monteiro.QT.&newsearch=true

International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1056

Monteiro et al. [5] worked to reunite validation and

verification practices within CMMI maturity level 2. In his

study, D. Singh [11] considered the factors such as software

size and provided a benchmark for effort, quality, and cycle-

time based on CMM Level 5 project data. S. R. Durugkar et

al. [10] suggested that companies applying for CMMI level

2 assessments must find out the possibility of

simultaneously implementing CMMI level 2 and the V & V

Process Areas to produce high quality software.

R. Dadhich and U. Chauhan [6] analyzed the effect of

integration of CMMI Level-3 in traditional software

development process. In their work, they identified various

risks associated with different phases of SDLC and proposed

a risk mitigation plan by conducting a survey with 10

different development companies in India. R. K. Chauhan et

al. [8] discussed various types of testing technique to

measure attributes contributing for software quality. S. Jat et

al. [14] conducted a study to assess a suitable technique for

testing software and finding out errors. They realized that

practically it is not possible to detect all the errors in

software, but they suggested that Gray-Box testing

technique is more accurate technique to find out errors and
Black-Box testing requires minimum effort, cost and time to

test a test-case.

III. SOFTWARE TESTING STRATEGIES

Software Testing is done to ensure that the developed

product is error-free, produces the desired results,

implements all requirements specifications into working

functions, is easily maintainable, and meets customer

expectations [3]. Software Testing has been defined in a

number of ways in software Engineering literature. Some of

the popular definitions are listed below:-

According to IEEE [1], Testing is a process which evaluates

a system or its sub-system to verify that it satisfies its

requirements as specified, either manually or by means of

automated tools.

According to Myers [13], Software Testing is a process

performed for the identification of errors in software.

In simplest form, testing can be defined as an activity

performed for identification and correction of errors. The

source of error plays a vital role in the successful and timely

completion of a project. Different phases of SDLC may

contain errors and if not handled properly, effect of error

and cost of error-rectification increases drastically, which

results in the failure of product. According to [13], the error

that occurs during coding phase is known as a Bug. This

error becomes a fault or defect, if the code produces wrong

results either due to incorrectly implemented statement or

due to absence of required statement. The error due to which

a piece of code is unable to perform its intended purpose

leads to a state known as product Failure. There are a

number of symptoms demonstrating the state of failure,

some of them are as follows:-

i) Code produces incorrect results,

ii) Under some circumstances, behaviour of code is not

reliable.

iii) Code terminates abruptly,

iv) Code does not meet time and space requirements.

Hence, if not handled properly at correct place and time, an

error or bug converts into a defect or fault which leads to the

state of Failure. Testing phase of SDLC is responsible for

handling all of the above mentioned terms.

Testing is a critical phase of software development activity

and consumes approximately 40% - 50% of total project

development efforts. Realizing the vital impact of testing on

the quality of a product, it is necessary to develop and

follow a software testing strategy to minimize the chances of

failure. A software testing strategy [3] helps software

developers in performing the software testing process in a

planned and systematic manner. It incorporates test plans,

the methods, techniques and tools, test case design, test

specifications, test execution, resultant data collection and

evaluation of collected data. In short, testing strategy

provides the software developers with a road map which

describes the steps to be conducted as a part of testing, and

also determines the required effort, time, and resources. It

must contain complete description of the test procedure

along with the purpose and requirements of testing.

Depending upon the nature and size of the software being

developed, a number of testing strategies have been

proposed. All of these strategies provide a template [12] to

the developer for testing and have the following

characteristics in common:-

 Testing begins at the unit (component or module) level

and proceeds outward to test the integrated units, and

finally to test the entire system.

 Different testing techniques are used during different

levels of testing, and also during different phases of

software development.

 Either software developer or an Independent Test

Group (in case of large projects) performs the testing

process.

 Testing and Debugging are different activities and

should not be used interchangeably, but debugging

must be accommodated / incorporated in every testing

strategy.

Low-level tests and high-level tests are the two basic

ingredients for designing an effective testing strategy. Low-

level tests are performed on small pieces of source codes

and are required to ensure that the requirements are

implemented correctly, whereas, high-level tests are

necessary to validate major functions of software. It ensures

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Paula%20Monteiro.QT.&newsearch=true

International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1057

that the software functions as per the user requirements. A

strategy must provide sufficient guidance for the tester and a

set of milestones for the manager. Software testing strategy

produces a detailed document elucidating the entire test plan

inclusive of all test cases used during the testing activity.

This detailed document also enlists the weaknesses or

discrepancies to be resolved prior to its future usages. A

testing strategy is not only required for improving the

software quality but also necessary for the improvement of

procedures and plans used for testing purposes. It helps in

documenting the issues and their rectifications [7] so that

those issues can be avoided in upcoming tests.

IV. CAPABILITY MATURITY MODEL

INTEGRATION (CMMI) & ITS

REPRESENTATIONS

CMMI is a process level improvement and appraisal

program (commonly referred as Software Process

Improvement Maturity Model) developed at Carnegie

Mellon University by a group of experts from Industry,

government and Software Engineering Institute (SEI).

CMMI is an improvement over its predecessor Capability

Maturity Model, i.e., CMM for Software or Software

CMM. CMMI is globally accepted as a software

development standard. It supplies a set of guidelines for

development process to improve the quality [1] of a

software product. It is a compilation of best practices that

could be implemented to improve the processes adopted to

develop a software product so that the ultimate product

becomes a high quality product and the organization meets it

business objectives and goals feasibly. It [1] can also be

used as a framework for appraising the process maturity of

the organization.

The main aim for the development of CMMI was to

integrate all the existing maturity models into a single

framework [2] in order to improve their usability. The

quality of process used to develop and maintain a product

predominantly influences its quality, so prior to the

emergence of CMMI; the objective of all maturity models

popularly used at that time was on the improvement of

processes used for the purpose of development. The special

contribution of three models, namely, CMM for Software

(SQ-CMM) v2.0 draft c [2], Electronic Industries Alliance

Interim Standard (EIA/IS) / Systems Engineering Capability

Model (SECM) [2], and Integrated Product Development

CMM (IPD-CMM) v0.98 [2] is worth-noticing in the

development of CMMI. These three models were selected

for integration because of their successful adoption for

improving processes in an organization. Initially, CMMI

was developed solely for Software Engineering, but now it

provides process improvement and development guidelines

for development of hardware products, for the delivery of all

kind of services, and for the Acquisition of Product and

Services. Currently three CMMI models [1] are available–

i) CMMI for Acquisition

ii) CMMI for Development

iii) CMM for Services

“CMMI for Development” covers activities appropriate for

the development of products and services. It contains

practices that cover software engineering, systems

engineering, hardware engineering, process management,

product management, and other supporting processes used in

development and maintenance.

According to SEI [1] CMMI -

(i) Integrates traditionally separate organizational

functions into a single function

(ii) Sets process improvement goals and priorities for an

organization,

(iii) Provides guidance for developing quality processes,

and

(iv) Provides a reference point for process appraisal.

The representation of CMMI model allows an organization

to pursue different improvement objectives. CMMI [2] can

be represented in two ways:-

A. Staged Representation

B. Continuous Representation

A. Staged Representation: It is used widely as a

standard representation to improve overall maturity

of an organization. It provides a ladder-styled process

improvement sequence. It specifies a systematic

improvement path for process maturity across an

organization by using a set of predefined process

areas [2]. It uses 5 maturity levels to portray the

overall status of the process exercised within the

organization. These 5 maturity levels are organized

as a set of layers where each lower layer provides a

basis for the immediate next upper step. Each

maturity level is comprised of specific and generic

practices for its relevant process areas, and guides an

organization in maturing the sub-processes associated

with that particular maturity level so that the

organization can move upwards to the next stage of

maturity. The maturity levels (MLs) are numbered

from 1 to 5 [2] as explained below:-

1. ML-1: Initial:- Organizations in this level lack the

stable environment required to support processes.

Although they use processes to develop and maintain

products, but these processes are designed on ad hoc

basis and are not maintained for reuse. Products

developed by such organizations do succeed in terms

of customer satisfaction but they are usually over-

budgeted and deviate from their original time

schedules and plans.

International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1058

2. ML-2: Managed:- Organizations at this level are

more organized, they have pre-planned process and

work-schedule to develop & maintain products. The

overall plan contains the details of work products,

milestones and services. At any point of time, the

overall status of project is visible to the management.

In case of any deviation or delay, the management

can take necessary actions to control the progress of

project. Besides, the used processes are maintained

for future reuse.

3. ML-3: Defined:- The above two levels follow

reactive approach whereas this level uses proactive

approach to manage processes. All the processes

maintained at maturity level 2 are re-defined in more

details at maturity level 3 in order to convert them

into a set of standard processes. The organization

derives the processes for the development,

maintenance and delivery of futuristic product from

its standard processes. The processes are defined for

each procedure, tool, method & standard and are

consistent across the organization. A minor trade-off

between standard and project-specific process may

exist because of the nature and requisites of project.

4. ML-4: Quantitatively Managed:- Organizations

willing to achieve this level select the sub-processes

that remarkably improve the overall performance of

process. These selected sub-processes are subjected

to some statistical techniques to obtain quantitative

results suitable for establishing and managing process

performance and quality benchmarks. These

statistically managed processes make it possible to

predict the performance of a process quantitatively

rather than qualitatively as is the case in ML3.

5. ML-5: Optimizing:- Organizations interested to

achieve this level continually improve their processes

performance quantitatively by identifying the factors

responsible for variation in processes. The

improvements are facilitated by implementing

technological innovations and by understanding the

inter-dependencies and inter-relationships exist

among various sub-processes of a process so that the

sources of variation can be mitigated effectively.

6.

B. Continuous Representation: The organizations

willing to improve the capability of a specific process

use this representation of CMMI. This representation

allows an organization to select the desired process

area for improvement and suggests the sequence of

improvements that best suits to achieve the business

objectives of organization. It has the following 6 (six)

capability levels to characterize improvement relative

to an individual process area :-

1. Level 0 – Incomplete: The organization implements

only some applicable specific practices.

2. Level 1 – Performed: The organization lacks the

necessary processes for sustaining service levels.

3. Level 2 – Managed: The organization manages and

reacts, but is not able to strategically predict costs of

services and compete with lean competitors.

4. Level 3 – Defined: The organization anticipates

changes in its environment and plans, but still lacks

the ability to forecast changing costs and schedules of

services.

5. Level 4 – Quantitatively Managed: The

organization statistically forecasts and manages

performance against selected cost, schedule, and

customer satisfaction levels.

6. Level 5 – Optimizing: The organization can reduce

operating costs by improving current process

performance or by introducing innovative services

to maintain their competitive edge.

As CMMI provides well-defined and proven Process Areas

(PAs) for each and every phase of SDLC, Software Testing

is not an exception. In CMMI terminology the terms

Verification and Validation has replaced the term Software

Testing. As we know that Testing is a process by which we

can ensure the correctness, completeness and quality of a

product, the processes related to verification and validation

can be considered as the processes for software testing also.

For better understanding, let us consider an emerging

organization which is at the very initial level of development

(say, a Software Start-up Venture) and does not have

standardized processes at their disposal to work in a

systematic and controlled manner in order to produce and

deliver a product that satisfies user requirements and is built

within time and budget limits. If such organization manage

to invest some additional efforts and money to improve their

products’ quality (and hence its success rate also) and

develop or outsources a proven software testing strategy,

implements it, and regulates its working according to the

outcomes of testing process, they will definitely have an

edge over their counterparts not employing any plans and

procedures for software testing. Once implementing a

software testing strategy at the infantry age of their

organization, they will succeed rapidly in the market by

providing low-budgeted (or slightly over-budgeted), good

quality product that satisfies customer requirements.

V. OBSERVED LIMITATIONS OF ML-1

According to the current definition of ML-1of CMMI, the

software is developed in an informal, unplanned,

uncontrolled, intuitive and non-systematic manner, hence,

there is no defined testing process. Due to this various

consequences can be identified, some of them are as

follows:-

(i) The process adopted for developing product is

unpredictable and changes frequently depending on

the competence of individual performing it.

International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1059

(ii) There are no well-defined processes or steps to

develop and hence, to monitor the development

activity. The developers are unable to tell the actual

amount or percentage of work completed or the

milestone achieved.

(iii) They are working as per their intuition and

experience which creates a chaotic scene as a result,

the time schedule, budget and delivery dates cannot

be specified in exact.

(iv) This type of development process may or may not

produce the product of desired quality and within

time & budget constraints.

(v) The delivered product may or may not satisfy

customer requirements as there is no quality check

before delivering the product. This approach makes

the software development a risky process.

VI. SOFTWARE TESTING PROCESS AREAS

CMMI directly does not provide process areas for software

testing as the term software testing is not used in CMMI.

The Process Areas related to software testing are provided at

Maturity Level -3 (ML-3) of staged representation of

CMMI. Among the process areas at ML-3 [2], the three

Engineering Process Areas, namely, Process Integration

(PI), Validation (VAL), and Verification (VER) are

primarily concerned with software testing. CMMI process

areas are defined by a set of goals and practices, grouped in

two categories as under-

1) Generic Goals (GG) and Practices (GP) – They are

common for all process areas.

2) Specific Goals (SG) and Practices (SP) – They are

applicable for a specific process area only.

Both the generic and specific goals and practices applicable

to specific process area must be implemented completely in

order to qualify the concerned Process Area. This paper

primarily deals with the specific practices and goals [2] for

two of the above mentioned three process areas:-

A. Validation (VAL): The validation process provides as

answer to the question – “Are we building the right

product?” The purpose of Validation is to show that the

product (or component) code functions as per

expectations and fulfils its intended purpose when

executed in its target environment. The actual products

entitled for validation include a unit of code, an

individual module, an integrated module, a complete

system or product.

Specific Practices by Goals:

 SG 1 Prepare for Validation
o SP 1.1 Select Product for Validation

o SP 1.2 Establish the Validation Environment

o SP 1.3 Establish Validation Procedures and

Criteria

 SG 2 Validate Product or Product Component

o SP 2.1 Perform Validation

o SP 2.2 Analyze Validation Results

B. Verification (VER): The Verification is performed

to obtain an answer to the question – “Are we

building the right product?” In other words, this

process checks whether the selected work-product

conforms to its specifications or not. The work

products entitled for verification include all the

documents designed prior to coding phase such as

Requirements Specification, Architectural Design.

Detailed Design, Database Design etc.

Specific Practices by Goals:

 SG 1 Prepare for Verification

o SP 1.1 Select Work Product for Verification

o SP 1.2 Establish the Verification Environment

o SP 1.3 Establish Verification Procedures and

Criteria

 SG 2 Perform Peer Reviews

o SP 2.1 Prepare for Peer Reviews

o SP 2.2 Conduct Peer Reviews

o SP 2.3 Analyze Peer Review Data

 SG 3 Verify Selected Work Products

o SP 3.1 Perform Verification

o SP 3.2 Analyze Verification Results

In short, Validation is a dynamic process of testing where

product is placed under operating environment to decide

whether it is working as intended or not, i.e., the product is

developed correctly or not. Also, whether the developed

product does what it supposed to do. Various methods of

testing like White-Box, Black-Box etc. are used for this

purpose. Verification is done prior to Validation. It is a

human based method for static testing of documents, designs

and codes (without executing) through which the selected

work product is reviewed to ensure that it meets its

requirements as specified and the correct product is being

developed. Methods like inspections, walk-through etc. are

used for the verification purposes. The successful

completion of Validation and Verification ensures that the

developed product is a quality product and will not fail

during testing at user’s end.

VII. IMPLICATIONS OF SOFTWARE TESTING AT

INITIAL LEVEL OF CMMI

A. Driving forces behind the Study

International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1060

In present scenario, every year all over the world, thousands

of Start-up ventures come into existence but very shortly

most of them cease to exist because of their informal,

unmanaged and unprofessional manner of working. Theses

start-ups experience financial problems due to which they

cannot afford for the formalism of processes at their initial

stages. They cannot implement maturity models at their

beginnings because it incorporates a lot of cost and efforts

which is not available and affordable at that situation. They

start their business with very small budget and very less

man-power.

B. Proposed Study

Despite of the constraints of finance and efforts, if such

organizations take some extra measures to plan not each and

every process but at least the most critical, success-deciding,

and quality reflecting process, i.e., the software testing

process of SDLC at ML-1 of CMMI, then, they can produce

and deliver products that are of high quality, low in cost

(although slightly more than the product cost build with

unplanned tests), built within time-bounds and satisfy

customer requirements and expectations as well.

With the help of partial integration of VAL and VER

process areas in ML-1, such organizations can better survive

in the development market and can grow as an organization

which can develop good quality products without

implementing any maturity model in its entirety. This blend

of ML-1 with a part of ML-3 will provide them with an edge

over their competitors who are already performing well in

the market, in terms of low-budgeted, high quality and

timely delivered product as shown in Fig.1.

Some Certification organizations may argue that they can

implement the Continuous representation of CMMI and

achieve Capability levels for testing process only rather than

implementing the Staged representation model. In that case

also, the organization (in question) has to implement it level-

wise without skipping any intermediate levels (same as the

case with staged model) which is again a time and effort

consuming task.

One of the important outcome of this study is for Software

developers who are working on low-cost projects i.e., start-

ups. They can gain benefit by following such approach

which places them a bit above the ML-1 and ML-2

organizations, but not equivalent to an ML-3 organization,

because it implements a small part of ML-3 process areas

skipping the time, cost and effort consuming procedure

required to implement the ML-2 Process Areas in its

entirety.

Figure 1. Proposed Structure of ML-1.

VIII. CONCLUSION

Not all organizations adopt CMMI [9] either due to the high

implementation cost of CMMI or because of the small size

of the organization. But they do use some other Software

Process Improvement models.

This study (mainly focuses on Start-ups) suggests that if

anyhow, the start-ups afford to formalize only the Process

Areas related to Validation and Verification (even partially)

then also they can increase their survival and success rate

remarkably. Also, in future, if they want to implement

CMMI maturity levels in their organization, they can do it

easily without repeating the entire process for the above-

mentioned process areas of ML-3.

REFERENCES

[1] “Capability Maturity Model® Integration (CMMI®)

Overview”, Carnegie Mellon University/ Software

Engineering Institute, pp: 393-411, 2005.

[2] “CMMI® for Development, Version 1.3”, Technical

Report, CMMI Product Team, Carnegie Mellon

University/ Software Engineering Institute, Nov-2010.

[3] R. S. Pressman, “Software Engineering: A Practitioner's

Approach”, Fourth Edition, McGraw-Hill Publications, pp:

448-512, 1997.

[4] A. Luqman, “Implementation And Analysis of CMMI's

Configuration Management Process Area; Applicable to

"Defined" Level – 3”, International Conference of

Information and Communication Technology, Karachi,

Pakistan, IEEE Conference Publications, pp: 296-301, 27-

28 Aug’2005.

International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1061

[5] P. Monteiro; R. J. Machado, R. Kazman, “Inception of

Software Validation and Verification Practices within

CMMI Level 2”, ICSEA '09. Fourth International

Conference on Software Engineering Advances, Porto,

Portugal, IEEE Conference Publications, pp: 536-541,

Conference of Proceedings published by IEEE Computer

Society, 20-25 Sep’2009.

[6] R. Dadhich, U. Chauhan, “Integrating CMMI Maturity

Level-3 in Traditional Software Development Process”,

International Journal of Software Engineering &

Applications (IJSEA), Vol.3, No.1, pp: 17-26, January

2012.

[7] S. H. Trivedi, “Software Testing Techniques”, International

Journal of Advanced Research in Computer Science and

Software Engineering, Volume 2, Issue 10, pp: 433-439,

October 2012.

[8] R. K. Chauhan, I. Singh, “Latest Research and

Development on Software Testing Techniques and Tools”,

INPRESSCO, International Journal of Current Engineering

and Technology, Vol.4, No.4, pp: 2386-2372, Aug 2014.

[9] M. Staples, M. Niazi, R. Jeffery, A. Abrahams, P. Byatt, R.

Murphy, “An exploratory study of why organizations do

not adopt CMMI”, Journal of Systems and Software, Vol.

80, No.6, pp: 883-895, June’2007.

[10] S. R. Durugkar, V. Surwase, “Software Validation and

Verification Practices in CMMI levels”, BIOINFO Soft

Computing, Vol. 1, Issue 1, pp: 01-04, 2011.

[11] D. Singh, “Software Testing using CMMI Level 5”,

International Journal of Computer Science Trends and

Technology, pp: 233-242, Mar-Apr 2016.

[12] N. Chauhan, “Software Testing: Principles and Practices”,

Second Edition, Oxford University Press, India, Dec’2016,
ISBN-13: 978-0198061847.

[13] R. Chopra, “Software Testing (A Practical Approach)”,

Third Edition, S.K. Kataria & Sons, India, 2010, ISBN:

9788189757908, 8189757903.

[14] S. Jat, P. Sharma, “Analysis of Different Software Testing

Techniques”, International Journal of Scientific Research

in Computer Science and Engineering (IJSRCSE), Vol.5,

Issue.2, pp.77-80, April ‘2017.

Authors Profile

R. Sharma pursued Bachelor of Science in 1988 and Master of

Computer Applications in 1991 from Banasthali Vidyapeeth,

Rajasthan, India She is currently pursuing Ph.D. and currently

working as Guest Faculty in Department of Computer Science &

Informatics, University of Kota, Kota, Rajasthan, India since 2013.

Her main research work focuses on SoftwareTesting and CMMI.

She has 24 years of teaching experience.

 R. Dadhich is working as Professor in the Department of

Computer Science and Informatics, University of Kota, Kota. She

has more than 19 years of teaching and 11 years of research

experience. Her areas of research are “ Wireless Ad-Hoc Networks,

Wireless Sensor Networks and Software Testing”. She has visited

University of Moratuwa, Colombo, Sri Lanka for research

assignment. She is working as an Advisory/Editorial Board

Member/Reviewer/Technical Committee member of various

International/National Journals and Conferences. She has more

than 60 research publications in Journals of international and

national repute and 09 candidates completed their Ph.D. work with

her. She also has authored 03 book-chapters and Edited 05 books.

She is honoured as Expert member of Research Committees of

different Universities. She has delivered expert lectures/invited

talks and chaired technical sessions in many

conferences/workshops & short term courses.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Paula%20Monteiro.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ricardo%20J.%20Machado.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Rick%20Kazman.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5298192
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5298192

