
 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1067 

International Journal of Computer Sciences and Engineering    Open Access 

 Research Paper                                         Vol.-6, Issue-5, May 2018                                  E-ISSN: 2347-2693 

                 

Comparative Study of String Matching Algorithms for DNA dataset 

 
Pooja Manisha Rahate

1*
, M. B. Chandak

2
 

 
1*

 Dept. of Computer Science and Tech., Shri Ramdeobaba College of Engineering & Management, Nagpur, Maharashtra, India 
2
 Dept. of Computer Science and Tech., Shri Ramdeobaba College of Engineering & Management, Nagpur, Maharashtra, India 

*Corresponding Author:  poojamanisha.pm@gmail.com,   Tel.: +91-9623897159 
 

Available online at: www.ijcseonline.org  

Accepted: 14/May/2018, Published: 31/May/2018 

Abstract— String matching algorithms are widely used in computer science fields for information retrieval, intrusion detection, music 

retrieval, database queries, language syntax checker, bioinformatics, DNA sequence matching and etc. The most common and well-known 

use of string matching algorithms is for bioinformatics. In bioinformatics the DNA sequences of the normal human being and matched with 

the DNA sequence of a person having viruses or any kind disease. The pattern of any disease or virus is matched with the normal DNA 

genome sequence. If the pattern is found in the sequence which is in the form of string it is considered that the human being or patient is 

having the tested disease. Thus the pattern is matched with the large amount of DNA sequence which is sometimes very complex and not 

easy to retrieve. Thus to get the result or matched pattern in the less time with more accuracy the algorithms such as Knuth-Morris-

Pratt(KMP), Boyer-Moore, Brute Force, Rabin-Karp and other algorithms are used. This paper presents five string matching algorithms from 

which four are exact matching algorithms and one is approximate string matching algorithm (Edit Distance). The above listed algorithms 

complexity will be compared using the DNA dataset to find the appropriate algorithm with high quality time and accuracy[1]. 

 

Keywords—  String Matching Algorithm, DNA sequence 

I.  INTRODUCTION  

String matching algorithm is an important component of the 

bioinformatics which is the application of computer science 

which stores the large amount of human health data to 

analyse the day to day problems which are commonly seen in 

the humans. Since the world is digitizing day by day, every 

single data of a person is stored somewhere into the 

databases including their health records, treatments taken 

previously and etc. The biological sequence data are growing 

in these databases at the exponential rate. These records can 

be useful while diagnosing the human DNA to find the future 

prediction disease that may affect a human and the 

precautions to be taken to avoid them. Thus all these things 

can be done by matching the exact as well as the 

approximate pattern with the person's DNA sequence. As the 

sequences are too long which are stored in various databases 

this process is quite expensive. Manually it will be tedious 

and time consuming to match or diagnose the pattern in the 

sequence. The computational demands are to find the exact 

or the approximate pattern in the sequence in less time 

complexity and with the good accuracy[1]. 

 

Deoxyribonucleic (DNA) is a molecule that carries the 

genetic instructions used in the growth, development, 

functioning and reproduction of all known living organisms 

and many viruses. DNA stores biological information. The 

two DNA strands are called polynucleotides since they are 

composed of simpler monomer units called nucleotides. Each 

nucleotide is composed of one of four nitrogen-containing 

nucleases (cytosine [C], guanine [G], adenine [A] or thymine 

[T]). The nitrogenous bases of the two separate 

polynucleotide strands are bound together, according to base 

pairing rules (A with T and C with G). For example, 

ATTCGTAACTAGGCCTAAGTAACGATA. Since the 

DNA contains only 4 characters ATCG in the sequence it 

becomes easier for the algorithms to find the exact matching 

or the approximating matching pattern in the sequence of 

DNA[2]. 

 

The organization of this paper is as follows. Section II 

presents the related work of string matching algorithms. In 

section III, methodology of the algorithms and their 

implementation is described. In section IV, experimental 

results are shown. In section V, concludes case study work. 

Sections VI contain the references used in this paper[1].  

 

II. RELATED WORK  

The string matching algorithm can be used to detect the 

inappropriate or the unusual patterns in the normal human 

being DNA sequence that may raise the risk of the disease or 

any major health problem for the particular human. The 

patterns are matched with the genome databases sequences 

which are the long DNA sequences available in the various 

databases. To get the exact match of the pattern in the 

sequence the exact matching algorithms such as KMP, 

Boyer-Moore, Rabin-Karp and Naive algorithms are used. 



   International Journal of Computer Sciences and Engineering                                      Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1068 

Thus the KMP algorithm is also known as the DNA 

sequencing algorithm since it gives the match in the less time 

as compared to the other string matching algorithms. The 

approximate string matching algorithm gives the 

approximate pattern found in the string and the minimum 

number of edit operations we can perform to get the exact 

pattern from the approximate pattern we found in the string. 

Thus, the demand for approximation algorithms is increasing 

day by day which gives all possible approximate patterns to 

be found in the DNA sequence with less cost and in more 

efficient manner[1]. 

III. METHODOLOGY 

String matching algorithm is very important topic for text 

processing systems. As the system contains large numbers of 

data in text the string matching algorithms are the main 

components of such systems. String matching algorithms 

consists of 2 components the string or text sequence and the 

pattern to be matched. The string is denoted by S= {s0, s1, s2, 

s3......sm} which contains m characters in it and the pattern is 

denoted by P= {p0, p1, p2......pn} contains n number of 

characters in it[1][5]. Thus the characters in pattern are less 

than the characters present in the string or the text sequence. 

The pattern is scanned through the string or text sequence 

using the size of window (i.e. the size of pattern). If the 

pattern does not match it gets shifted by the specific number 

derived from the pattern characters and if the pattern gets 

matched with the characters present in the sequence it gets 

shifted by the pattern size. This is the normal functionality of 

the String matching algorithm. [1] 

 

 The part of the dataset used for the analysis is shown below: 

GCAAGATAGGCTATGATATCAGCTATGCATAAGCT

GGTACCGAGCTCGGATCTAACGACTGTTGATTGGTC

AGCGGAAGATAGATCTACAGTTAGGACTTGCGACA

GTCCATTTAGATCTACGCTTGATGTACCGGGCCGCA

TCCTTAGATCTACGTGGGAAGTGTAGGGTTCCATTG

ATAGATCTACACACTGACCCCCCATTCACCCCAATA

GATCTAGCCCACCCCTTCTACAAAACCCTACTAGAT

CTATCGGGTGGTTCTAATGCGGCACTTCTAGATCTA

TTCGTAGCCCCTCATCGCGCAATTCTAGATCTAGCC

TTCGTTTTTGTCAAGCTGCCCCTAGATCTAACACCT

ATGCGTCCCCCTCCCCCACTAGATCTACGACAGGCG

GTCGATCAATTTTGGTTAGATCTAAGGGGTTAAATT

GGGACGTGTGGAGTAGATCTACAATGCGTGATGTA

ATCGTGACCATTAGATCTAACGCAATGTTTCTCGCG

TCCCTCGCTAGATCTATCAGAATTTTAGGGATAGGA

CTATCTAGATCTACCGAGGGGGGCAGGTGTCGTTGT

CATAGATCCACTAGTAACGCCGCCAGTGTGCTGGA

ATTCTGCAGATATCCATCACAATGGCGGACGCTCGA

GCATGCATCTAGAGGCCCAATTCAGCCTATAGTGAG

TCGTATTACAAGTCACTGGCCGACGTCATACACGTC

CGGACTGGACAACCTGGCGTACCCCCTTAACGCTGG

AGGCATCCCTTTCAGTGGGAAAAAAAGAGGCAAGA

ACGCTCACAAATGGGACCAAGCAGAAGGACAAAAA

ACCGCCTCGGAGCAATCAACGCAGAACACCCTATA

ACTTTACAGCTTTCCCTGTTCCACGCNNAAAGACAC

AACAGAA[7][8]. 

The String Matching Algorithms presented in this paper are 

described below: 

 

1. Naive (Brute Force) Algorithm: 

The naive string matching algorithm is also known as Brute 

Force algorithm. This is the most simple string matching 

algorithm. This algorithm starts matching the pattern and 

sequence characters from left to right. This algorithm 

matches the each character of pattern with the corresponding 

character of string by shifting the pattern with 1.The 

algorithm stops when the matched pattern is found 

successfully in the sequence or their occurs a mismatch till 

the end of the sequence. If the pattern is of length m and the 

text sequence is of length n the total time complexity to 

search the pattern in the text sequence is O(n*m). Thus this 

process is time consuming. The search function of Brute 

force is given below[1][3][4]. 

Table 1. Naïve String matching Algorithm 

INPUT: String str, Pattern pat 

OUTPUT: Starting string str index where pattern pat matched 

 

OUTER_LOOP: 
 

for (int i = 0; i <= N - M; i++) { 

    count = 0; 

    for (int j = 0; j < pat.length; j++) { 

        if (pat[j] == str[i + j]) { 

            count = count + 1; 
        } 

    } 

    if (count == pat.length) { 
        System.out.println("Pattern found at index=" + i); 

        break OUTER_LOOP; 

    } 

} 

 

2. Rabin-Karp Algorithm: 

 

The Rabin-Karp algorithm is the exact string matching 

algorithm. This algorithm uses the pre-processing function to 

generate the numeric value for the pattern. In pre-processing 

the algorithm has the numeric value for each character (i.e. 

from 1 to 26 for A to Z (same goes for the small alphabets 

also)). The numeric value is calculated using the character 

value and the smallest prime number corresponding to the 

number of characters in the pattern. If the pattern contains 3 

characters the prime no. for that pattern will be 3, if the 

pattern contains 4 or 5 characters the prime number should 

be 5 or greater than 5. Thus, the selection of prime number 

for calculation should be at least equal to or greater than the 

length of the pattern. Thus, this removes the collision of 



   International Journal of Computer Sciences and Engineering                                      Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1069 

values for the pattern to be matched and the mismatched 

pattern. The example using collision and without collision of 

values is given below.  If the alphabets in the pattern gets 

repeated this also gives the different numeric value as 

compared to the value generated for the non-repetition of the 

alphabets in the pattern. The example of both is given below. 

The Rabin-Karp algorithm works from left to right. Since the 

algorithm works on the numeric value of the pattern, it 

selects the characters from the sequence equal to the length 

of the pattern. After selecting the characters equal to the 

length of the pattern, the algorithm generates the numeric 

value of selected characters form the sequence. If the value 

gets matched the pattern is found in the sequence else the 

pattern is not found.  

  

To find the numeric value of the while sequence, the value of 

1st substring is calculated the same way the value of pattern 

is obtained. For the remaining selected substring the value of 

the previously calculated substring and the calculations are 

made. The steps of calculation are explained below. 

 

i. Take the pattern characters one at a time. 

ii. Assign the character the value in power of prime 

number starting from 0 for the first character. 

iii. Select the appropriate character serial number and 

multiply the number with power of prime number. 

iv. Repeat Step 1 to 3 for all the characters of the 

pattern. 

v. Add the values of all the characters obtained to get 

the numeric value of the whole pattern. 

 

There are 2 methods in Rabin-Karp to find the string 

matching. 

 

i) Take series number of the alphabets: 

In this the numeric value of the alphabets is considered. 

 

For example, Pattern: becd 

 

 b = 2, 

 e = 5, 

 c = 3, 

 d = 4 

 

ii) Frequency count: 

In this method the count of alphabets in the pattern is 

considered. The alphabets are arranged in the descending 

order of their count. To calculate the numeric value the serial 

no. is considered of the alphabet. 

 

For example, String: engineering_college and Pattern: leg 

 

 

Sr. no. Alphabets Frequency Count 

1 E 5 

2 G 3 

3 N 3 

4 I 2 

5 L 2 

6 C 1 

7 O 1 

8 R 1 

9 _ 1 

 

The pre-process for calculating the numeric value of the 

pattern for both the methods is same.  

 

 
Figure 1.  Pattern value calculation for Rabin-Karp 

The Error! Reference source not found.., shows how the 

pattern is calculated using the series number of the alphabets 

with the prime number 3. The pattern value obtained is 26. 

Table 2. Rabin-Karp String matching Algorithm 

INPUT: String str, Pattern pat 

OUTPUT: Starting string str index where pattern pat matched 

for(int k=0;k<string.length-1;k++){ 

 if(k==0){ 

           while(x<pat.length) { 

              curr_char = string[x]; 

              curr_char_unique_index =  

   unique_chars.indexOf(curr_char); 

              curr_char_unique_index_value =  

  

 unique_chars_index.get(curr_char_unique_index); 

              sum_prev +=  

   curr_char_unique_index_value  

   * Math.pow(prime_no, x); 

              x++; 

             } 

             if(sum==sum_prev){ 

                System.out.println("Pattern found at index="+k); 

             } 

        }else{ 

           int chck=k+pat.length-1; 

           if(chck==string.length){ 

               break; 



   International Journal of Computer Sciences and Engineering                                      Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1070 

           }else{ 

              sum_str=0; 

              curr_char=string[k-1]; 

              last_char=string[k+pat.length-1]; 

              curr_char_unique_index= 

   unique_chars.indexOf(curr_char); 

              last_char_unique_index= 

   unique_chars.indexOf(last_char); 

              curr_char_unique_index_value= 

  

 unique_chars_index.get(curr_char_unique_index); 

              last_char_unique_index_value= 

  
 unique_chars_index.get(last_char_unique_index); 

              sum_str= 

(((sum_prev-curr_char_unique_index_value)/ 

prime_no)+(last_char_unique_index_value 

 *Math.pow(prime_no,pat.length-1))); 

              sum_prev=sum_str; 

              if(sum==sum_str){ 

                  System.out.println("Pattern found at index="+k); 

              } 

          } 

      } 

} 

 

3. Knuth-Morris-Pratt (KMP) Algorithm: 

  

The idea behind KMP algorithm is, whenever the mismatch 

occurs between the pattern and the text sequence characters 

we shift the pattern by the number of characters matched 

previously during traversal. Since we know the characters of 

the text sequence prior to mismatch, we can shift the pattern 

in such a way that, the new pattern matching starts from the 

mismatched index character by incrementing one to 

it[3][4][5].  

  

The algorithm starts matching the pattern with the text 

sequence from left to right. The shift value is obtained from 

numeric value of the pattern characters. The numeric value is 

finding using the long prefix matched of the characters from 

the current position of the characters. In the prefix of the 

particular character and the suffix of the same character, 

some characters must be same. Thus this increases the shift 

of the pattern and the time from O(n
2
) to O(n+m)[3].  

The idea behind this to increase the shift by more than 1 and 

to reduce the complexity. While finding the prefix value of 

the pattern, if the prefix character does not match the value of 

that character is 0. While finding the prefix value, we always 

check from the starting characters of the pattern. To find the 

prefix value, the value of 1st character of pattern will be 

always 0.Increment the position of the pointer by 1. Match 

the character with the previous character of the pattern. If 

match found the character value will be the number of 

characters matched previously. The shift of the pattern will 

be calculated by subtracting the previous character index and 

the previous prefix value, where the mismatched 

occur[1][3][4][5]. 

Table 3.KMP String matching Algorithm 

INPUT: String str, Pattern pat 

OUTPUT: Starting string str index where pattern pat matched 

Pattern Prefix Value Function: 
 

int[] val = new int[pat.length]; 

int curr_index = 1; 
int j=0, count = 0; 

val[0] = 0; 

int M = pat.length; 
 

while (curr_index < M) { 

    int x=0; 
    for(;x<curr_index;x++){ 

        count=0; 

        int a=curr_index; 
        int b=x; 

        while(b>-1){ 

            if(pat[a]==pat[b]){ 
                count=count+1; 

                val[curr_index]=count; 
            }else { 

                break; 

           } 
            a--; 

            b--; 

        } 
    } curr_index=curr_index+1; 

} 

 
Search Pattern Function: 

OUTER_LOOP: 

for (s = 0; s < N; ) { 
    int count = 0; 

    for (int j = 0; j < pat.length; j++) { 

        if (s + j >= N) { 
            break; 

        } else { 

            if (pat[j] == str[s + j]) { 
                count = count + 1; 

            } else { 

                s += (j + 1) - (val[j]); 
                break; 

            } 

        } 
    } 

    if (count == pat.length) { 

        System.out.println("Pattern found at index=" + s); 
        s += pat.length; 

        break OUTER_LOOP; 

    } 

} 

4. Boyer-Moore (BM) Algorithm: 

 



   International Journal of Computer Sciences and Engineering                                      Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1071 

The Boyer-Moore algorithm is the fastest string matching 

algorithm. The complexity of this algorithm is minimum. 

The algorithm starts scanning the pattern from right to left 

(i.e. the matching starts from the nth character of the pattern 

instead of the 1st.). This increases the shift more as compared 

to the KMP algorithm shift. In KMP the prefix value of the 

character is found for the shift. But in BM algorithm the 

method is different. In BM the value of the character is 

obtained by subtracting the 1 and the index value of the 

character from the total length of the pattern. The special 

symbol (*) asterisk is added at the end of the pattern. The 

value of the asterisk symbol and the last character of the 

pattern is equal to the length of the pattern.  If the last 

character of the pattern and the 1st character of the pattern is 

same, then the value of 1st character will be equal to the last 

character of the value of the pattern. After constructing the 

value table, the unique characters of the pattern are found 

including the asterisk symbol. The values of these characters 

will be taken from the value table. If any character is 

repeated in the pattern, then the latest value of that character 

is considered from the LHS[3]. 

In Boyer-Moore algorithm the mismatch character of text 

sequence is considered rather than the character of pattern 

which done in KMP and Naive algorithms. Then the value of 

the mismatch character is found in the value table using 

unique characters value. If the mismatch character is not 

present in the unique characters, the value of asterisk is taken 

as the shift value, and the pattern is shifted using the 

same[3][4][5]. 

 

Table 4.Booyer-Moore String matching Algorithm 

INPUT: String str, Pattern pat 

OUTPUT: Starting string str index where pattern pat matched 

Pattern Numeric Value Function: 

 

for(int i=0; i<=pat.length;i++){ 
    index[i]=i; 

 

    if(i<pat.length-1){ 
        val[i]=pat.length-1-index[i]; 

        patnew.add(pat[i]); 

    } 
 

    if(i==pat.length-1){ 

        val[i]=pat.length; 

        patnew.add(pat[i]); 

    }if(i==pat.length){ 

        patnew.add('*'); 
        val[i]=pat.length; 

    }      if(!charbuff.contains(patnew.get(i))){ 

            unique_char.add(patnew.get(i)); 
            charbuff_val.add(val[i]); 

        }else{ 

           int ind= unique_char.indexOf(patnew.get(i)); 
           charbuff_val.remove(ind); 

           charbuff_val.add(ind,val[i]);        

} 
    j++; 

    charbuff.add(patnew.get(i)); 

 

} 

 

Search Pattern Function: 

 

OUTER_LOOP: 
 while(s<=n){ 

   int j=m-1; 

 
      if(s+j>n-1){ 

         break; 

      }else { 
         while(j>=0 && pat[j]==str[s+j]){ 

             j--; 

        } 
        if(j<0){  

             System.out.println("Pattern found at index:"+ (s)); 

             break OUTER_LOOP; 

 }else{        

                             if(!unique_char.contains(str[s+j])){ 

                                     int u=unique_char.indexOf('*'); 
                                     int v=charbuff_val.get(u); 

                                     s+=v; 

                               }else{ 
                                   int u=unique_char.indexOf((str[s+j])); 

                                    int v=charbuff_val.get(u); 

                                    s+=v; 
                       } 

                 } 

           } 

    } 

 

5. Edit Distance Approximation String Matching 

Algorithm:  

 

The Edit Distance approximation algorithm is the 

approximation string matching algorithm whose objective is 

to find out the minimum edit distance between string and 

pattern, so that after performing the edit operations the string 

gets exactly matched with the pattern. 

 

E.g. Let SATION is the pattern and ZATION be the string. 

Thus to get the string and pattern exactly matched, the 

minimum edit distance is 1 here. That is updating Z into S. 

 

 

 

 

 

 

There are 3 types of Edit 

Operations: 

1. Insert 

2. Delete 

3. Update 

The second objective of the edit distance algorithm is,  

S  A  T  I  O  N 

Z  A  T  I  O  N 



   International Journal of Computer Sciences and Engineering                                      Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1072 

1. to find minimum distance,  

2. location of the pattern (i.e. approximate available 

pattern in string),  

3. Travel path to trace the pattern in the string. 

To find the approximate string in the text sequence, the 

following steps need to be followed: 

 

Step 1: Find the length of the string and pattern 

Step 2: Create matrix where,  

 rows = length of pattern + 1                                       

  columns = length of string sequence + 1 

Step 3: Enter 0 in the 0
th

 row of the matrix. 

 Enter 0....m in the 0
th

 column of the matrix. 

 where, 

  m=length of pattern 

Step 4: To fill the cell of the matrix below formula is 

 used, 

  e(x,y)=min[(e(x-1,y-1)+δ(x,y), 

e(x,y-1)+1, 

e(x-1,y)+1)] 

  

where, δ(x,y)=update cost (i.e. If update, then 1,if 

not update then 0) 

 

Suppose we have matrix[i][j], where i=3 and j=4. 

Hence to fill the cell of the matrix where i=3 and 

j=4, we need to take 3 cells of the matrix into 

consideration,  

i.e. matrix[i-1][j-1] = matrix[2][3] + 1, 

matrix[i][j-1] = matrix[3][3] + 1, 

matrix[i-1][j] = matrix[2][4] + 1, 

hence using the value of above cells, if the character 

at pattern index 3 and the character at string index 4 

does not match, we need to take the min value from 

the above cells and fill the matrix[3][4] with the min 

value[4][6]. 

 

If the character at pattern index 3 and character at 

pattern index 4 gets matched, then the diagonal 

value is taken. In this way, the whole matrix gets 

evaluated. 

 

Step 5: Find the minimum edit distance.  

 The minimum edit distance is the minimum value 

 of the last row. 

 

Step 6: Travel path to travel the pattern in string. 

Once the minimum value is obtained, traverse the 

path until we reach the 0
th 

row (i.e. from last row 

traverse upwards). While traversing, again the e(x-

1,y-1), e(x,y-1) and e(x-1,y) is taken into 

consideration. 

 

Step 7: Find the positions where the edit operations need 

 to form. 

 While traversing, if we move, 

i. To the upper cell (e(x-1,y)), then, the insert 

operation is to be performed at that position. 

ii. To the diagonal cell (e(x-1,y-1)), then, 2 conditions 

need to checked, 

a. If value of diagonal and current cell gets 

matched, then, there is a match of the 

character. 

b. If value of diagonal and current does not 

matched, but still, the diagonal is taken, 

there  the update operation needs to be 

performed. 

iii. To the left cell (e(x, y-1)), then the remove/delete 

operation is to be performed at that position[3][6]. 

 

Table 5.Edit Distance Approximate String Matching Algorithm 

INPUT: String str, Pattern pat 

OUTPUT: Finds the approximate string with respect to input pattern and 
gives the minimum edit distance to make the obtained pattern equal to the 

desired pattern 

Generate Matrix Function: 

 
public void Generate_Matrix(char[] str, char[] pat) { 

    //i,j-1    Insert/Remove 

    //i-1,j    Insert/Remove 
    //i-1,j-1  Update 

    int M = str.length; 

    int N = pat.length; 
    int matrix[][] = new int[pat.length + 1][str.length + 1]; 

 

    for (int i = 0; i <= N; i++) { 
        matrix[i][0] = i; 

    } 

 
    for (int j = 0; j <= M; j++) { 

        matrix[0][j] = 0; 

    } 
 

    int i = 1; 

 
    while (i <= N) { 

        for (int j = 1; j <= M; j++) { 

            if (pat[i - 1] == str[j - 1]) { 
                matrix[i][j] = matrix[i - 1][j - 1]; 

            } else { 

                matrix[i][j] = min(matrix[i - 1][j - 1], matrix[i][j - 1], matrix[i - 
1][j]); 

            } 

        } 
        i++; 

    } 

    getLastRow_MinValue(matrix,pat,str); 
} 

 

 
 

 

Finding Approximate String Function: 



   International Journal of Computer Sciences and Engineering                                      Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1073 

 

public void Get_Approximate_Matched_String 

(int[][] matrix, int index,char[] pat,char[] str) { 
 

        ArrayList<Integer> approximate_str_index = new 

ArrayList<Integer>(); 
        int i = pat.length; 

        ArrayList<Character> approximate_str = new ArrayList<Character>(); 

        ArrayList<String> char_oprations = new ArrayList<>(); 
        int count = 0; 

 

        while (i > 0) { 
            if (!approximate_str_index.contains(index - 1)) { 

                approximate_str_index.add(index - 1); 

            } 
            index = minValue_index(matrix, i, index, char_oprations); 

            i--; 

        } 

 

        for (int j = approximate_str_index.size() - 1; j >= 0; j--) { 

            approximate_str.add(str[approximate_str_index.get(j)]); 
        } 

        for(int a=0; 

a<approximate_str.size();a++){ 
            System.out.println(approximate_str.get(a)); 

        } 

 
        for (int k = 0; k < char_oprations.size(); k++) { 

            System.out.println("The edit operations to be performed are:" + 

char_oprations.get(k)); 
        } 

    } 

 

IV. RESULTS AND DISCUSSION 

 

In this section, the comparison of all the algorithms with 

some specific examples is tabularized below. The below 

table explains the best, worst and average complexity of the 

algorithms using the same pattern and the string. The 

complexity shown in the below table is in the form of 

milliseconds while searching the pattern in the string at the 

starting of the string, middle of the string and at the end of 

the string. 
 

 
Table 6. Comparison Results of Exact String Matching Algorithms 

Algorithm Naive 
Rabin-

Karp 
KMP 

Boyer-

Moore 

String 

1 

Pattern 

1 

Best 

Case 
0.042865 1.387940 0.025961 0.039242 

Pattern 
2 

Avg. 
Case 

0.391821 1.569700 0.111690 0.421404 

Pattern 

3 

Worst 

Case 
1.112676 3.796864 0.263227 0.479967 

String 

2 

Pattern 
1 

Best 
Case 

0.043468 1.076453 0.042261 0.46488 

Pattern 

2 

Avg. 

Case 
0.386991 1.151919 0.111087 0.133425 

Pattern 

3 

Worst 

Case 
0.710591 1.345716 0.160593 0.154555 

String 

3 

Pattern 

1 

Best 

Case 
0.040450 1.058340 0.033809 0.032602 

Pattern 

2 

Avg. 

Case 
0.374917 1.075245 0.120143 0.222776 

Pattern 
3 

Worst 
Case 

0.687650 1.086112 0.161197 0.351371 

String 

4 

Pattern 

1 

Best 

Case 
0.048903 1.042643 0.031394 0.027771 

Pattern 
2 

Avg. 
Case 

0.382765 1.064377 0.112898 0.176893 

Pattern 

3 

Worst 

Case 
0.725081 1.119317 0.168441 0.365257 

 

V. CONCLUSION 

This paper provides the comparative study of the exact string 

matching algorithms and the approximate string matching 

algorithm with respect to DNA sequence. These algorithms 

are very effective in the DNA sequence matching in the bio 

filed since the DNA sequences are very huge and complex to 

retrieve easily. The comparative study shows the best case, 

average case and worst case time complexities of the exact 

string matching algorithms.  

 

The best case time complexity for Naïve Algorithm is in the 

range of 0.040 milliseconds and worst case is in the range of 

0.725 milliseconds. The best case time complexity for Rabin-

Karp Algorithm is in the range of 1.042 milliseconds and 

worst case time complexity is in the range of 3.796 

milliseconds. Since the calculation is done to find the pattern 

number and string numeric value to be matched in Rabin-

Karp, the complexity of this algorithm is always more as 

compared to the matching algorithms. The best case time 

complexity for KMP algorithm is in the range of  0.0259 

milliseconds and the worst complexity is in the range of  

0.2632 milliseconds. The best case time complexity for 

Boyer-Moore algorithm is in the range of 0.0277 

milliseconds and the worst case complexity is in the range of 

0.4799 milliseconds. Thus according to the comparative 

study of various exact string matching algorithm, the best 

suited algorithm of DNA sequence matching is KMP 

algorithm for best case time complexity as well as for worst 

case complexity. This paper also presents the implementation 

of the Edit Distance Approximate string matching algorithm 

to find the approximate pattern in the DNA sequence. 

According to the implementation of this algorithm it takes 

0.100219 milliseconds (i.e. 100219 nanoseconds) to find the 

approximate string with respect to pattern in the DNA 

sequence. Finally this paper gives optimal result according to 

each result. 

REFERENCES 

[1] NYO ME TUN, THIN MYA MYA SWE, “Comparison of Three 

Pattern Matching Algorithms using DNA Sequences”, IJSETR,  

Vol.3, Issue.35, pp.6916-6920, 2014.  



   International Journal of Computer Sciences and Engineering                                      Vol.6(5), May 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        1074 

[2] https://en.wikipedia.org/wiki/DNA 

[3] Robert Sedgewick, Kevin Wayne, “Algorithms”, Fourth Edition, 

Addison-Wesley,Pearson Edition, India, pp. 760-776, 2011. 

[4] Thomas Cormen,Charles E. Leiserson,Ronald L. Rivest,Clifford 

Stein, “Introduction to Algorithms”, McGraw-Hill Publication, 

India, pp.909-926, 2001.  

[5] Raju Bhukya, DVLN Somayajulu, “Exact Multiple Pattern Matching 

Algorithm using DNA Sequence and Pattern Pair”, International 

Journal of Computer Applications, Number 8,Article 6, pp.32-38, 

2011.               

[6] Petteri Jokinen, Jorma Tarhio and Esko Ukkonen, “A Comparison of 

Approximate String Matching Algorithms”, Software-Practice and 

Experience, Vol.1(1), pp.1-4,  1988.  

[7] http://ccg.vitalit.ch/cgibin/htpselex/show?htpselex&tf=NF1_1&clone 

[8] https://archive.ics.uci.edu/ml/machine-learning-databases/molecular-
biology/promoter-gene-sequences/promoters.data 

 


