

 © 2018, IJCSE All Rights Reserved 1082

International Journal of Computer Sciences and Engineering Open Access

 Research Paper Vol.-6, Issue-5, May 2018 E-ISSN: 2347-2693

A Novel Location Awareing Mapreducing Techniques Using Big Data

Applications

 Bhavani Buthukuri

 1*
, M E Purushoththaman

2

1
Department of CSE, Shri JagadishPrasad Jabarmal Tibrewala University, Jhun Jhunu, INDIA

2
Department of Computer Science and Engineering, JNTUH, INDIA

*Corresponding Author: mepurushoththaman@yahoo.com , Tel.: +91-99596 16498

Available online at: www.ijcseonline.org

Accepted: 15/May/2018, Published: 31/May/2018

Abstract— There is a growing trend of applications that should handle big data. However, analyzing big data is a very

challenging problem today. For such applications, the MapReduce framework has recently attracted a lot of attention. Google's

MapReduce or its open-source equivalent Hadoop is a powerful tool for building such applications. In this paper, we will

discuss the MapReduce framework based on Hadoop, and how to design efficient MapReduce algorithms and present the state-

of-the-art in MapReduce algorithms for data mining, machine learning, query processing, data analysis and similarity joins.

The intended audience of this tutorial is professionals who plan to design and develop MapReduce algorithms and researchers

who aware of the state-of-the-art in MapReduce algorithms available today for big data analysis.

Keywords— Map Reduce Framework, Hadoop, Data Mining, Query Processing, Data Analysis,

I. INTRODUCTION

Due to popular of online social network, huge amount of

data are generating and processing, these data with existing

techniques is not efficient and these large amount data is

called big data. Big Data is a collection of large datasets that

cannot be processed using traditional computing techniques.

For example, the volume of data in Face book or YouTube

are required to collect and manage on a daily basis, can fall

under the category of Big Data. However, Big Data is not

only about scale and volume, it also involves one or more of

the following aspects − Velocity, Variety, Volume, and

Complexity.

Online data, streaming data, are becoming more and

more essential in online social networks and organization

applications. Applications facilitate the fact that data are

acquired immediately electronically and then often made

accessible to other enterprise information systems. An

example is the usage of sensor data (like e.g. GPS

coordinates) providing context information about a user. This

information is used in all kinds of context aware information

systems, e.g. location based services.

In Twitter, tweets are streamed continuously and in order

to process real stream data required efficient workflow

transformation. Sensor information (i.e., context information)

is continuously acquired and published. Information systems

have to continuously process this information. That is, after a

specified number of information has been accumulated, the

available information is processed. Workflows, where the

availability of data, coordinates (i.e., controls) the processing

in the workflow are called data driven workflows. Classical

business workflows are coordinated by interactions with

humans or other information systems (called control flow

driven) and terminate after a case is complete. Processing of

continuous sensor data (i.e., streaming data), however, does

not terminate without user interaction, since a stream is per

definition infinite.

An example of a data driven workflow is an online

navigation system providing additional location based

services to the driver of a car, like the availability of gas

stations, rest rooms, weather forecasts, or accommodations.

All of the above mentioned location based services rely on

the GPS coordinates. The GPS coordinates provide the

context for the various location based services. Each location

based service can be represented by a single data driven

workflow.

II. BIG DATA

Big data is an evolving term that describes any

voluminous amount of structured, semi-structured and

unstructured data that has the potential to be mined for

information. Although big data doesn't refer to any specific

quantity, the term is often used when speaking about

Petabytes and Exabytes of data.

 Big data is used to describe a massive volume of

data that is so large that it's difficult to process. The data is

too big that exceeds current processing capacity.

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1083

 Big data can be characterized by 3Vs: the extreme

volume of data, the wide variety of types of data and the

velocity at which the data must be must processed.

Fig.1:Big Data 3V’s

An example of big data might be Petabytes (1,024

terabytes) or Exabyte’s (1,024 Petabytes) of data consisting of

billions to trillions of records.

E.g. Web, sales, customer contact center, social media, and

mobile data.

Fig 2. Data Measurements

III. APACHE HADOOP:

Fig.2:Hadoop-logo

 Hadoop is an open-source software framework for

storing and processing big data in a distributed fashion on

large clusters of commodity hardware. Essentially, it

accomplishes two tasks: massive data storage and faster

processing.

 Doug Cutting, Cloudera's Chief Architect, helped

create Apache Hadoop out of necessity as data from the web

exploded and grew far beyond the ability of traditional

systems to handle it. Hadoop was initially inspired by papers

published by Google outlining its approach to handling an

avalanche of data, and has since become the de facto standard

for storing, processing and analyzing hundreds of terabytes,

and even petabytes of data.

Why is Hadoop important?

Since its inception, Hadoop has become one of the most

talked about technologies. Why? One of the top reasons (and

why it was invented) is its ability to handle huge amounts of

data – any kind of data – quickly. With volumes and varieties

of data growing each day, especially from social media and

automated sensors, that’s a key consideration for most

organizations. Other reasons include:

 Low cost. The open-source framework is free and uses

commodity hardware to store large quantities of data.

 Computing power. Its distributed computing model can

quickly process very large volumes of data. The more

computing nodes you use, the more processing power you

have.

 Scalability. You can easily grow your system simply by

adding more nodes. Little administration is required.

 Storage flexibility. Unlike traditional relational databases,

you don’t have to preprocess data before storing it. And that

includes unstructured data like text, images and videos. You

can store as much data as you want and decide how to use it

later.

 Inherent data protection and self-healing capabilities.

Data and application processing are protected against

hardware failure. If a node goes down, jobs are automatically

redirected to other nodes to make sure the distributed

computing does not fail. And it automatically stores multiple

copies of all data.

The main components of Hadoop are:

Fig 3. HDFS Data Distribution

Data in HDFS is replicated across multiple nodes for compute

performance and data protection.

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1084

IV. MAPREDUCE

 MapReduce is a massively scalable, parallel

processing framework that works in tandem with HDFS. With

MapReduce and Hadoop, compute is executed at the location

of the data, rather than moving data to the compute location;

data storage and computation coexist on the same physical

nodes in the cluster. MapReduce processes exceedingly large

amounts of data without being affected by traditional

bottlenecks like network bandwidth by taking advantage of

this data proximity.

Fig 4. MapReduce Compute Distribution

MapReduce divides workloads up into multiple tasks that can

be executed in parallel.

 The Map Reduce framework operates exclusively on

<key, value> pairs, that is, the framework views the input to

the job as a set of <key, value> pairs and produces a set of

<key, value> pairs as the output of the job, conceivably of

different types.

 The key and value classes have to be serializable by

the framework and hence need to implement the Writable

interface. Additionally, the key classes have to implement the

WritableComparable interface to facilitate sorting by the

framework.

Input and Output types of a MapReduce job:

(input) <k1, v1> -> map -> <k2, v2> -> combine -> <k2, v2>

-> reduce -> <k3, v3> (output)

Hadoop Ecosystems:

 The Hadoop platform consists of two key services: a

reliable, distributed file system called Hadoop Distributed

File System (HDFS) and the high-performance parallel data

processing engine called Hadoop MapReduce, described in

MapReduce below.

 The combination of HDFS and MapReduce provides

a software framework for processing vast amounts of data in

parallel on large clusters of commodity hardware (potentially

scaling to thousands of nodes) in a reliable, fault-tolerant

manner. Hadoop is a generic processing framework designed

to execute queries and other batch read operations against

massive datasets that can scale from tens of terabytes to

petabytes in size.

 The popularity of Hadoop has grown in the last few

years, because it meets the needs of many organizations for

flexible data analysis capabilities with an unmatched price-

performance curve. The flexible data analysis features apply

to data in a variety of formats, from unstructured data, such as

raw text, to semi-structured data, such as logs, to structured

data with a fixed schema.

 Hadoop has been particularly useful in environments

where massive server farms are used to collect data from a

variety of sources. Hadoop is able to process parallel queries

as big, background batch jobs on the same server farm. This

saves the user from having to acquire additional hardware for

a traditional database system to process the data (assume such

a system can scale to the required size). Hadoop also reduces

the effort and time required to load data into another system;

you can process it directly within Hadoop. This overhead

becomes impractical in very large data sets.

 Many of the ideas behind the open source Hadoop

project originated from the Internet search community, most

notably Google and Yahoo!. Search engines employ massive

farms of inexpensive servers that crawl the Internet retrieving

Web pages into local clusters where they are analyzes with

massive, parallel queries to build search indices and other

useful data structures.

 The Hadoop ecosystem includes other tools to

address particular needs. Hive is a SQL dialect and Pig is a

dataflow language for that hide the tedium of creating

MapReduce jobs behind higher-level abstractions more

appropriate for user goals. Zookeeper is used for federating

services and Oozie is a scheduling system. Avro, Thrift and

Protobuf are platform-portable data serialization and

description formats.

A. MapReduce

 MapReduce is now the most widely-used, general-

purpose computing model and runtime system for distributed

data analytics. It provides a flexible and scalable foundation

for analytics, from traditional reporting to leading-edge

machine learning algorithms. In the MapReduce model, a

compute “job” is decomposed into smaller “tasks” (which

correspond to separate Java Virtual Machine (JVM) processes

in the Hadoop implementation). The tasks are distributed

around the cluster to parallelize and balance the load as much

as possible. The MapReduce runtime infrastructure

coordinates the tasks, re-running any that fail or appear to

hang. Users of MapReduce don’t need to implement

parallelism or reliability features themselves. Instead, they

focus on the data problem they are trying to solve.

B. Pig

 Pig is a platform for constructing data flows for

extract, transform, and load (ETL) processing and analysis of

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1085

large datasets. Pig Latin, the programming language for Pig

provides common data manipulation operations, such as

grouping, joining, and filtering. Pig generates Hadoop

MapReduce jobs to perform the data flows. This high-level

language for ad hoc analysis allows developers to inspect

HDFS stored data without the need to learn the complexities

of the MapReduce framework, thus simplifying the access to

the data.

 The Pig Latin scripting language is not only a

higher-level data flow language but also has operators similar

to SQL (e.g., FILTER and JOIN) that are translated into a

series of map and reduce functions. Pig Latin, in essence, is

designed to fill the gap between the declarative style of SQL

and the low-level procedural style of MapReduce.

C. Hive

 Hive is a SQL-based data warehouse system for

Hadoop that facilitates data summarization, ad hoc queries,

and the analysis of large datasets stored in Hadoop-

compatible file systems (e.g., HDFS, MapR-FS, and S3) and

some NoSQL databases. Hive is not a relational database, but

a query engine that supports the parts of SQL specific to

querying data, with some additional support for writing new

tables or files, but not updating individual records. That is,

Hive jobs are optimized for scalability, i.e., computing over

all rows, but not latency, i.e., when you just want a few rows

returned and you want the results returned quickly. Hive’s

SQL dialect is called HiveQL. Table schema can be defined

that reflect the data in the underlying files or data stores and

SQL queries can be written against that data. Queries are

translated to MapReduce jobs to exploit the scalability of

MapReduce. Hive also support custom extensions written in

Java, including user-defined functions (UDFs) and serializer-

deserializers for reading and optionally writing custom

formats, e.g., JSON and XML dialects. Hence, analysts have

tremendous flexibility in working with data from many

sources and in many different formats, with minimal need for

complex ETL processes to transform data into more

restrictive formats. Contrast with Shark and Impala.

Fig 5. Apache Hadoop Ecosystem

V. PROBLEM STATEMENT

Continuous stream data processing and workflows

have been examined in different field. Business workflows

are quite different from continuous stream data processing.

Among many workflow models the neighboring

workflow model is scientific workflow models, Dataflow

process networks are stream based data processing

approaches forming the basis for many scientific workflow

systems, like e.g. Kepler or Taverna.

A dataflow process network specifies that each

stream element is read at most once from an input stream, the

read data is transformed, and new data is produced.

The control flow of a data flow process network is

controlled by the consuming activity via a data pull. The

activities in the scientific workflow performing the actual

data transformation are not restricted.

In this generic model information required to

perform an activity is buffered by an activity itself. Keeping

so much information implicit in an activity makes data

sharing between different workflows difficult, since workflow

optimization does not have access to implicit buffer

mechanisms.

A. SCOPE

This research work is carried out in a fixed number

of data size, no. of nodes and Hadoop configuration

parameter.

No. of Nodes

Experimental results carried out in single Node as

well up to four nodes, including one master node and three

slave modes which are physically distributed.

 No. of Data Size In this research the workload for all

Hadoop jobs has linearly increased from 1 GB Data 2 GB

Data up to 3 GB all the experiments are carried out .

No. of Hadoop Jobs Experiment results carried out using

below list of Hadoop jobs (BENCHMARK SUITE)

 Pi

 TeraGen

 TeraSort

 TeraValidate

 Word Count

 TestDFSIO –Read T

 estDFIO –Write

 No. of Hadoop Configuration Parameters Experiment results

carried by customizing default Hadoop Configuration

Parameters setting. Hadoop job Performance analysis,

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1086

evaluation and tuning done through the customization of

below Hadoop Configuration Parameter values.
 mapreduce.output.file output format. compress

 mapreduce. output. file output format. compress. codec

 mapreduce.map.output.compress.

 mapreduce.map.output.compress.codec

 mapreduce.reduce.speculative dfs. Block size

 mapreduce.task.io.sort.factor

LIMITATIONS

 Continuous data streams have become crucial

requirement for many scientific and industrial

applications

 .Computation and communication on geo distributed

data centers are cost effective.

 In streaming workflow for the short life cycle of data

stream is failure. Workflow scheduling requires high

performance computing resources

OBJECTIVE

1. To study the data work flow transformation for

continues tweet stream

2. To analyze the elements of reducing cost for data

transformation and continuous tweet stream

3. To detect the situation for optimizing tweet stream

work flow Transformation

4. To estimate latency for workflow creation and

execution

5. To find Tweet stream workflow describes which

tweets are generated between which activities. The

aim of the tweet stream workflow approach is to

process tweet and therefore creating continuous

tweet steam workflow transformation is the main

objective.

VI. RESEARCH METHODOLOGY

Twitter continuous tweets constitute a rich resource

that can be used for discovering useful knowledge about any

topic that you can think of. This tweet summery information

can be used in different use cases such as finding trends

related to a specific keyword, measuring brand sentiment, and

gathering feedback about new products and services.

This is a short guide on using Tweet Streaming to analyze

social network data. Generating a tweet streaming workflow

that is useful for fetching Twitter data in real-time, and also

clustering the tweets based on their text and location, using

the k-means algorithm. Tweet stream workflow facilitates us

to rapidly and easily Discover tweet information from

continuous stream tweet.

Process for Generating Tweet stream workflow

First, we need to read Twitter data from large dataset.

However, unlike conventional technique, we do not actually

save the Tweets on our disk or into a database. Instead, we

clean, analyze and visualize it all in real-time. So in this case,

we won’t have to face scalability issues – we can read data

for hours and continue to visualize it on a map.

 Scraper: it will help to Read data from Twitter and it

is input to the tweet stream workflow.

During workflow execution: input tweet data is

consumed and new tweet data sets are created. For large-scale

computational science simulations, runtime monitoring is

critically important: intermediate data sets and special

provenance information are often displayed on a web-based

monitoring “dashboard” to inform the scientist about progress

and possible problems during execution. Depending on this

information, the scientist may decide to abort a simulation or

workflow run.

What is Real Time Streaming Data

Streaming Data is data that is generated continuously

by thousands of data sources, which typically send in the data

records simultaneously, and in small sizes (order of

Kilobytes). Streaming data includes a wide variety of data

such as log files generated by customers using your mobile or

web applications, ecommerce purchases, in-game player

activity, information from social networks, financial trading

floors, or geospatial services, and telemetry from connected

devices or instrumentation in data centers.

This data needs to be processed sequentially and

incrementally on a record-by-record basis or over sliding time

windows, and used for a wide variety of analytics including

correlations, aggregations, filtering, and sampling.

Information derived from such analysis gives companies

visibility into many aspects of their business and customer

activity such as –service usage (for metering/billing), server

activity, website clicks, and geo-location of devices, people,

and physical goods –and enables them to respond promptly to

emerging situations. For example, businesses can track

changes in public sentiment on their brands and products by

continuously analyzing social media streams, and respond in

a timely fashion as the necessity arises.

Fig 7: Stream data workflow process

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1087

Collect data from different sources such as Twitter,

Facebook, ecommerce sites. On basis of some keyword such

as “High Throughput” , We have to filter data. Generate

sentiment of each message coming through various

sources.Have a Storage mechanism for storing the processed

data.

Analyzer

Hadoop generates a job history log after job execution.

Hadoop Job History provides various Job Counters, File

System Counters and Map-Reduce Framework and used

parameter Configuration.

The analyzer is use of analysis of Hadoop Job History Logs

and Hadoop configuration parameter. For analysis purposes

of Hadoop Job two things CPU Utilization and Throughput

(MB) should be calculated. 1. Analyzer performs analysis of

both Hadoop job history log as well as configuration

parameters of executing Hadoop jobs.

2. Analyzer receives default configuration parameter.

 3. After analysis analyzer calculate CPU Utilization (%) and

Throughput(MB) based on Hadoop Job history log CPU

Utilization % = (Total CPU times in Second / Execution time

(Seconds)) * 100 Throughput (MB) = (Input Bytes /

Execution time (Seconds)) / 1024/102

VII. RESULTS AND DISCUSSIONS

a. MapReduce Workflow

MapReduce workflow,he framework will split the

 input into segments,passing each segment to a different 

machine. Each machine then runs the map script on the 

portion of data attributed to it. The map script

takes some input data, and maps it to <key, value> 

pairs according to your specifications. For example, if w

ant to count word frequencies in a text, we’d have <wor

d, count> be our <key, value> pairs. Our map script,  

then, would emit a  pair for each word in the input 

stream. Note  that the map script does no aggregation

this   is   what  

thereduce script it for. The purpose of the map script is

 to model the data into  pairs for the reducer to aggreg

ate. Emitted  pairs are then shuffledwhich basically mean

s that pairs with the same key are grouped and passed t

o a single machine,which will then run the reduce script

 over them

The reduce script takes a collection of  pairs and“reduce

s” them according to the user‐specified reduce script. 

Fig 8: MapReduce work flow

Input Split Phase: The Input split depends upon the type of

the input format. For example if we are using a text data, then

we will be having our input of type Text Input Format. The

input format splits the data line by line and each line which

splitted is assigned to a mapper. This data is stored based

upon the key value pairs. The Key here is the byte offset

address which is of object type and each line will be the value

here, excluding the line terminators. There are also different

input formats like Key Value Text Input Format, Sequence

File Input Format, Sequence File As Text Input Format,

Sequence File As Binary Input Format, etc.[6]

 

Algorithm:MapReducing Algorithm

1. Begin.

2. function Map is

3. input: integer K1 between 1 and 1100,

representing a batch of 1 million social.person

records

4. for each social.person record in the K1 batch do

5. let Y be the person's age

6. let N be the number of contacts the person has

7. produce one output record (Y,(N,1))

8. repeat

9. end function
10. function Reduce is

11. input: age (in years) Y

12. for each input record (Y,(N,C)) do

13. Accumulate in S the sum of N*C

14. Accumulate in Cnew the sum of C

15. repeat
16. let A be S/Cnew

17. produce one output record (Y,(A,Cnew))

18. end function

Mapper Phase: Mapper is all about the initialization work for

processing data. They value that we get from Input Splitter

phase becomes the key here now and each key is assigned a

value here. Now, this becomes the new Key-value pairs

which is further sent to Reducer or Sort and Shuffling based

on the requirement of processing the data. Sort and Shuffling

Phase: This phase comes into the picture whenever need

some repetitive data or grouping of data is required before

sending to the Reducer Phase. This will check whether if

 International Journal of Computer Sciences and Engineering Vol.6(5), May 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1088

there is any data that needs to be sorted and thus sorts the data

and send it to reducer.

Reducer Phase: This is the actual phase where aggregation

of sorted data happens and finally generating the processed

data. Once the data is processed, it is sent back to HDFS

using Output Format.

Reducer execution will not begin until all the Mappers are

completed:

The Reducer phase starts execution only after all the

Mappers completed.Even if one of the mappers fail the

reducer phase will have to wait until the failed job is assigned

to a different mapper and completed successfully. This could

be more time consuming and not an efficient way of using

resources [7].

Fig 9.Mapper and reducer execution process

One way to work around this problem is in the settings in

new versions of Hadoop (at least 2.4.1) the parameter is

called is mapreduce.job.reduce.slowstart.completedmaps.

The value of the setting should be in the range 0 to 1 for

example if we set mapreduce .job.

reduce.slowstart.completedmaps = 0.7, 70 percent of the

mappers should be completed before the reduce phase starts

[8].

VIII. RUN YARN

HDFS is a distributed storage system, it doesn’t provide any

services for running and scheduling tasks in the cluster. This

is the role of the YARN framework. The following section is

about starting, monitoring, and submitting jobs to YARN.

--

Start and Stop YARN

--

 Start YARN with the script:start-yarn.sh

 Check that everything is running with the jps

command. In addition to the previous HDFS

daemon, you should see a ResourceManager on

node-master, and a NodeManager on node1 and

node2.

 To stop YARN, run the following command on

node-master:stop-yarn.sh

 Monitor YARN

//The yarn command provides utilities to manage

your YARN cluster. You can also print a report of

running nodes with the command:yarn node –list

//Similarly, you can get a list of running

applications with command:

 yarn application –list

//As with HDFS, YARN provides a friendlier web

UI, started by default on port 8088 of the Resource

Manager. Point your browser to http://node-master-

IP:8088 and browse the UI:

Fig 10: Yarn User interface

IX. SUBMIT MAPREDUCE JOBS TO YARN

Yarn jobs are packaged into jar files and submitted

to YARN for execution with the command yarn jar. The

Hadoop installation package provides sample applications

that can be run to test your cluster. You’ll use them to run a

word count on the three books previously uploaded to HDFS.

SUBMIT A JOB WITH THE SAMPLE JAR TO YARN. ON

NODE-MASTER, RUN

YARNjar~/Hadoop/share/Hadoop/mapreduce/Hadoop-

mapreduce-examples-2.8.1.jar wordcount "books/*" output

The last argument is where the output of the job will be

saved - in HDFS. After the job is finished, you can get the

result by querying HDFS with hdfs dfs -ls output. In case of

a success, the output will resemble:

Found 2 items

-rw-r--r-- 1 Hadoop supergroup 0 2017-10-11 14:09

output/_SUCCESS

-rw-r--r-- 1 Hadoop supergroup 269158 2017-10-11

14:09 output/part-r-00000

Print the result with:

hdfs dfs -cat output/part-r-00000

X. PROCESSING STOCKS DATA

For processing data a subset of a stock dataset taken

with information of stock symbols. In each line in the

dataset, it has information about stock symbol for a day.

Information like the opening price, closing price, high, low,

 International Journal of Computer Sciences and Engineering Vol.6(4), April 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1089

volume, etc, if consider one line in the dataset, each line

indicates a record. So, the first one is the exchange name, the

next is the symbol, the date, the opening price, the closing

price, high, low for the day and the volume. Using this

dataset, we would like to find the maximum closing price for

each stock symbol across several days. Let’s have a look at

our dataset.

Fig 11: stack dataset

To implement the solution to stock processing data,

by using a Single-node cluster developed by Cloudera. It will

also be using Eclipse IDE to write the Java Classes for

Mapper and reducer.

i. Mapper Class :

Create a Java class with name (let's say) StockMapper and

extend the class Mapper from

org.apache.Hadoop.mapreduce.Mapper package and

override the map method to implement the mapper logic in

this class. So, let’s work on the logic here, it has an input

data which has lines of Text data. But, it doesn’t have any

datatype which can store Text Type. So, we will be

converting it into String datatype. Once you convert into the

String type, now using split method to differentiate each line

from the record. Now from each line or record, need two

fields i.e., stock symbol and its closing price. So, assign

stock symbol data and closing price to two new variables.

The logic here will look something similar to this.

String line = value.toString();

 String[] items = line.split(",");

 String stockSymbol = items[1];

 Float closePrice =

Float.parseFloat(items[3]);

ii. Reducer Class

Create a Java class with name (let’s say) StockReducer and

extend the reducer class from

org.apache.Hadoop.mapreduce.Reducer package and

override reduce method to implement reducer logic in the

class. From mapper class, we already have separate stock

symbols and their respective closing price values. Now using

foreach loop we will be finding the maximum closing price

value by comparing with every stock symbol in the

dataset. The logic here will look something like this.

Float maxClosePrice =Float.MIN_VALUE;

 for(FloatWritable value : values)

{

maxClosePrice=

Math.max(maxClosePrice, value.get());

}

iii. Driver Class

This is the actual class where execution of the code

starts from the main method. In this class, it import many

class libraries like Job, FileInputFormat, FileOutputFormat,

TextInputFormat, TextOutputFormat and Path Class. This is

also the class, where it assign the mapper and reducer classes

for execution of the logic. FileInputFormat is used for adding

the input path and FileOutputFormat is used to set the output

path to store the output in the prescribed location. Once,

written our Java Classes, the very next thing we do is

creating a Jar File out of these classes by exporting the class.

The above screenshot will give you an understanding of how

to create a Jar File.

Fig12. Jar files loading

Fig 13: Jar file creation

In this example, created a jar file with name StockPrice.jar .

To execute the program in Hadoop, it need to upload the data

into HDFS. The command that used to insert data into

HDFS is Hadoop fs -

put /home/training/Desktop/StocksData /user/training/Stock

s

 International Journal of Computer Sciences and Engineering Vol.6(4), April 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1090

Here the first path is the input data file with path and second

path is the Output File Path. Let us execute our logic now in

Hadoop.

Hadoopjar /home/training/Desktop/StockPrice.jar (Jar

File)

 com.mapreduce.stocks.StocksDriver (Driver Class File

) /user/training/Stocks (Input File

Path in HDFS)

 /user/training/StockOutput

 (Output Folder Path)

Let us now see the results of our logic that

implemented to find the maximum closing price of each

respective stock symbol.

The fig11 and fig12 screenshot displays the complete

mapreduce process happening during the execution time.

Now, lets see the our output. We can view the output in

HDFS Browser as well as from terminal.

Fig 14: stock price

The above screenshot displays the maximum closing price of

each stock symbol after MapReduce processing.

Fig 15: Output window

This is another way to view the output from terminal using

the ls command in Hadoop.

XI. CONCLUSION

The MapReduce programming model has been

efficiently used at Google for plenty one-of-a-kind purposes.

We attribute this achievement to several motives. First, the

model is easy to use, even for programmers without revel in

parallel and distributed systems, because it hides the info of

parallelization, fault-tolerance, locality optimization, and

cargo balancing.

Second, a big type of troubles are effortlessly

expressible as MapReduce computations. For example,

MapReduce is used for the generation of statistics for

Google's manufacturing net search service, for sorting, for

records mining, for gadget mastering, and many different

structures.

Third, we have developed an implementation of

MapReduce that scales to big clusters of machines

comprising heaps of machines. The implementation makes

green use of these system resources and therefore is

appropriate for use on some of the huge computational

problems encountered at Google. Redundant execution can

be used to reduce the effect of gradual machines, and to deal

with system disasters and data loss.

REFERENCES

[1]. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte,

H. A. Jacobsen, 2013 "BigBench: Towards an industry

standard benchmark for big data analytics", Proc. ACM

SIGCOMM USA, pp. 1197-1208.

[2]. D. Sun, G. Zhang, S. Yang, W. Zheng, S. U. Khan, K. Li,

2015 "Re-Stream: Real-time and energy-efficient resource

scheduling in big data stream computing

environments", Information Sciences., vol. 319, pp. 92-

112.

[3]. Hideya Nakanishi; Masaki Ohsuna; Mamoru Kojima;

Setsuo Imazu; Miki, 2016, “Real-Time Data Streaming

and Storing Structure for the LHD’s Fusion Plasma

Experiments”, ISSN: 1558-1578, Volume: 63, Issue: 1,

pp: 222 – 227.

[4]. Jeongkyu Hong ; Soontae Kim, 2017, “Smart ECC

Allocation Cache Utilizing Cache Data Space” ISSN:

0018-9340, Volume 66, Issue 2, pp: 368 – 374.

[5]. Miao Wang ; Guiling Wang ; Yujun Zhang ; Zhongcheng

Li, 2016, “A High-reliability Multi-faceted Reputation

Evaluation Mechanism for Online Services”, ISSN: 1939-

1374, Volume PP, Issue: 99, pp 1-1.

[6]. Neha Bharill ; Aruna Tiwari ; Aayushi Malviya, 2016,

“Fuzzy Based Scalable Clustering Algorithms for

Handling Big Data Using Apache Spark”, ISSN: 2332-

7790, Volume: 2, Issue 4, pp: 339-352.

[7]. Neng Zhang ; Jian Wang ; Yutao Ma, 2017, 7. “Mining

Domain Knowledge on Service Goals From Textual

Service Descriptions”, ISSN: 1939-1374, Volume PP

Issue 99, pp:1-1.

[8]. Yuji Ishizuka; Wuhui Chen; Incheon Paik, 2016,

“Workflow Transformation for Real-Time Big Data

Processing”, ISSN: 978-1-5090-2622-7, Big Data

(BigData Congress), 2016 IEEE International Congress

on Wuhui Chen; Incheon Paik; Zhenni Li, 2017,

[9]. “Cost-Aware Streaming Workflow Allocation on Geo-

Distributed Data Centers” ISSN: 0018-9340, Volume 66,

Issue: 2, pp: 256-271.

 International Journal of Computer Sciences and Engineering Vol.6(4), April 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1091

Authors Profile

Ms. Bhavani Buthukuri, Research Scholar from
SHRI JAGDISHPRASAD JHABARMAL
TIBREWALA UNIVERSITY, received her
Bachelor’s degree in Computer Science &
Information Technology in the year 2006 and
received her Master’s degree in Computer
Science and Engineering in the year 2011.
Pursuing Ph.D in Real Time Stream processing
for Big Data. Research interests include Hadoop & Data
Warehousing.

Dr M E Purushoththaman Professor from the
department of Computer Science and
Engineering, Hyderabad. A docotorate in
Neural Networks(2007) and Cloud
Computing(2016), achieved his Bachelor
degree from the Royal Charter, The Institution
of Engineers(India) on 2000 and his Masters on
2003 from the Punjabi University, Patiala,
docotorated by the Fellow of IE(India) and also
Chartered Engineer(India), in academics as Principal a decade and
hold various positions earlier for seven years, and a product of
prouded soldier from the great EME of Indian Army. He has
published more than 20 research papers in reputed international
journals and conferences including IEEE. His main research work
focuses on Cloud Computing, Network Security, Cloud Security
and Privacy, Big Data Analytics, Data Mining, He has 17 years of
teaching experience including 14 years of Research Experience.

