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Abstract— A Distributed Denial of Service flooding attack in the network performed implicitly and as well as explicitly by the 

attacker or victim. This attempt is performed to overload the server, generate malicious traffic or interrupting the service. This 

issue crashes the host and the host’s service will be unavailable to the legitimate users. The enterprise, employment, and 

assessment of D-PID, a basis that uses PIDs transferred between adjacent domains as inter-domain routing objects. In DPID, 

the PID of an inter-domain path linking two domains is reserved clandestine and changes animatedly. We label in part how 

neighbouring domains negotiate PIDs, how to uphold constant communications when PIDs change. We shape a 42-node 

sample comprised by six domains to prove D-PID’s possibility and demeanour widespread admirations to gauge its efficacy 

and charge. 
 

Keywords—Inter-domain routing, security, Distributed Denail-of-Service (DDoS), path identifiers          

 

I. INTRODUCTION 

 

In recent years major threat in computer world is DDoS 

attacks. The DDoS come from the Denial of service (DoS) 

attacks; Where DoS is early used by the underground 

attackers to bring down the services of Organizations. It is 

very easy to performed this attack because the tools (for 

example Trinoo) required of this attacks are available in 

internet for free downloadable and easy to use .Distributed 

denial of service (DDoS) attack, which makes a server suffer 

in having slow responses to clients or even refusing their 

accesses, is one of the major threats which will continue in 

the future. DDoS attack is targets the important resources 

like banks and other similar organizations to make the 

important information to access or publish to everyone or 

some persons. It works distribute over a wide range of 

systems to launch this attacks to bring down the website by 

continuously sending requests to access the resources and 

make it to denial other requests.   Distributed denial-of-

service (DDoS) flooding attacks are very harmful to the 

Internet. In a DDoS attack, the attacker uses widely 

distributed zombies to send a large amount of traffic to the 

target system, thus preventing legitimate users from 

accessing to network resources [1]. For example, a DDoS 

attack against BBC sites in Jan. 2016 reached 602 gigabits 

per second and “took them down for at least three hours” [3]. 

More recently, the hosting provider OVH suffered a large 

scale DDoS attack in Sep. 2016, launched by a botnet 

composed at least of 150,000 Internet-of-things (IoT) 

devices. This attack peaked at nearly one terabit per second 

(Tbps) and even forced Akamai to stop offering DDoS 

protection to OVH [2]. Therefore, many approaches [4] have 

been proposed in order to prevent DDoS flooding attacks, 

including network ingress filtering [5] - [9], IP trace back 

[10] - [14], capability-based designs [15] - [18], and shut-up 

messages [19] - [20]. At the same time, in recent years there 

are increasing interests in using path identifiers PIDs that 

identify paths between network entities as inter-domain 

routing objects, since doing this not only helps addressing 

the routing scalability and multi-path routing issues [21], but 

also can facilitate the innovation and adoption of different 

routing architectures [22]. For instance, Godfrey et al. 

proposed path let routing [21], in which networks advertise    

the PIDs of path lets throughout the Internet and a sender in 

the network constructs its selected path lets into an end-to-

end source route. There are two different use cases of PIDs in 

the aforementioned approaches. In the first case, the PIDs are 

globally advertised (as in path let routing [21] and [22]). As a 

result, an end user knows the PID(s) toward any node in the 

network. Accordingly, attackers can launch DDoS flooding 

attacks as they do in the current Internet. In the second case, 

conversely, PIDs are only known by the network and are 

secret to end users (as in LIPSIN [23]. In the latter case, the 
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network adopts an information-centric approach [25] - [27] 

where an end user (i.e., a content provider) knows the PID(s) 

toward a destination (i.e., a content consumer) only when the 

destination sends a content request message to the end user. 

After knowing the PID(s), the end user sends packets of the 

content to the destination by encapsulating the PID(s) into 

the packet headers. Routers in the network then forward the 

packets to the destination based on the PIDs. It seems that 

keeping PIDs secret to end users (as in [23], [24]) makes it 

difficult for attackers to launch DDoS flooding attacks since 

they do not know the PIDs in the network. Due to the static 

nature of the PIDs it is not enough to keeping the PIDs secret 

form the end users as a preventing step for DDoS flooding 

attacks. For example, Antikainen et al. argued that an 

adversary can construct novel filters (i.e., PIDs) based on 

existing ones and even obtain the link identifiers through 

reverse-engineering, thus launching DDoS flooding attacks 

[28]. Moreover, attackers can launch DDoS flooding attacks 

by learning PIDs if they are static. To overcome this issue 

the dynamic PID (D-PID) mechanism is design, 

implementation and evaluation is presented in this research. 

In D-PID, two adjacent domains periodically update the PIDs 

between them and install the new PIDs into the data plane for 

packet forwarding. Even if the attacker obtains the PIDs to 

its target and sends the malicious packets successfully, these 

PIDs will become invalid after a certain period and the 

subsequent attacking packets will be discarded by the 

network. Moreover, if the attacker tries to obtain the new 

PIDs and keep a DDoS flooding attack going, it not only 

significantly increases the attacking cost, but also makes it 

easy to detect the attack. In particular, our main contributions 

are twofold. 

On one hand, we propose the D-PID design by addressing 

the following challenges. First, how and how often should 

PIDs change while respecting local policies of autonomous 

systems (ASes)? To address this challenge, D-PID let’s 

neighboring domains negotiates the PIDs for their inter-

domain paths based on their local policies. It is mandatory 

for legitimate communications to maintain its 

communications to prevent illegal communications while 

changing the PIDs because inter-domain packet forwarding 

uses PIDs which changes. Overcome this problem, D-PID 

lets every domain distribute its PIDs to the routers in the 

domain. Third, the overheads incurred by changing PIDs 

should be kept as small as possible.(It has Passover overhead 

for neighboring domains to pass PIDs and also have 

distributed overhead of updated PIDs for domains. This is 

experimented with 42-node prototype over six domains to 

verify and compare D-PIDs feasibility.  

As a last paragraph of the introduction should provide 

organization of the paper/article (Rest of the paper is 

organized as follows, Section I contains the introduction of 

DDoS attacks, Section II contain the related work of DDoS 

flooding attacks, Section III contain the problem statement of 

Dynamic path identifier, Section IV contain the background 

work and motivation, section V explain the prototype  

methodology, Section VI describes results and discussion 

about D-PID over the DDoS attacks , Section VII explains 

the conclusion.  

II. RELATED WORK 

Because of the complexity and difficulty in defending against 

DDoS flooding attacks, many approaches have been 

proposed in past two decades. For instance, filtering-based 

approaches aim at mitigating DDoS flooding attacks by 

deploying source address filtering at routers [5] - [9]. 

Similarly, IP trace back-based methods trace attacks back 

through the network toward the attacking sources [10] - [14]. 

In addition, the approaches proposed in [19] - [20] aim at 

mitigating DDoS attacks by sending shut-up messages to the 

attacking sources, assuming that they will cooperate and stop 

flooding. While there are too many literatures, we refer 

interested readers to [4] for a survey on existing approaches 

in defending again DDoS flooding attacks. Instead, we 

outline prior work closely related to this work and compare 

D-PID with them. A main reason that DDoS flooding attacks 

proliferate is a node can send any amount of data packets to 

any destination, regardless whether or not the destination 

wants the packets. To address this issue, several approaches 

have been proposed. In the “off by default” approach [15], 

two hosts are not permitted to communicate by default. 

Instead, an end host explicitly signals, and routers exchange, 

the IP-prefixes that the end host wants to receive data packets 

from them by using an IP-level control protocol. The D-PID 

design is similar in spirit, since D-PID dynamically changes 

PIDs and a content provider can send data packets to a 

destination only when the destination explicitly sends out a 

GET message that is routed (by name) to the content 

provider. However, there are two important differences. 

First, the “off by default” approach works at the IP-prefix 

granularity, but D-PID is based on an information-centric 

network architecture and works at the content granularity. 

Second, the IP-prefixes that an end host wants to receive 

packets from are propagated throughout the Internet in the 

“off by default” approach, which may cause significant 

routing dynamics if the allowed IP-prefixes of end hosts 

change frequently. On the other hand, the PIDs are kept 

secret and change dynamically in D-PID. While this incurs 

cost since destinations need to re-send GET messages, the 

results presented in Sec. V show that the cost is fairly small. 

The capability-based designs [16] - [17] also share the same 

spirit with “off by default” and D-PID. In these approaches, a 

sender first obtains the permission from the destination in 

order to send data packets to it. The destination provides the 

capabilities to the sender if it wants to receive packets from 

the sender. The sender then embeds the obtained capabilities 

into packets. Routers along the path from the sender to the 

destination verify the capabilities in order to check whether 

or not the destination wants to receive the packets. If not, the 
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routers simply discard the packets. D-PID differentiates from 

the capability-based approaches in two aspects. One hand, 

communications are initiated by receivers in D-PID but by 

senders in capability based approaches. On the other hand, 

the capability-based approaches are vulnerable to “denial-of 

capability” attacks, where compromised computer(s) sends 

plenty of capability requests to a victim, thus preventing 

normal users to obtain the capability from the victim. By 

contrast, D-PID effectively mitigates such attacks because of 

three reasons. First, the GET messages carry the PIDs along 

the paths from the compromised computers to the victim. 

Second, the PIDs are negotiated by neighbouring domains 

that can verify the authenticity of PIDs when they forward 

GET messages.  

III.PROBLEM STATEMENT 

 The impact off DDoS Flooding attack ranges from the 

simple inconvenience to use a particular service to causing 

major failures at the targeted server. The existing methods 

used static path identifiers(S-PIDs) for communication 

between the routers or resource manager or systems. Due to 

the static nature it is easy to launch an attack by an attacker 

like DDoS flooding attacks. To overcome this issue, 

Dynamic path identifiers (D-PIDs) are one of the proposed 

methods to detect and defend the DDoS flooding attacks. 

IV. METHODOLOGY 

BACKGROUND AND MOTIVATION 

 

A. Brief Introduction to CoLoR 

CoLoR is a receiver-driven information centric network 

architecture that assigns unique and persistent content names 

(or service identifiers, SIDs) to content chunks. As in [20] 

and [27], CoLoR assigns intrinsic secure self-certifying node 

identifiers (NIDs) to network nodes and ASes so that 

authenticating a node/AS does not require an external 

authority such as ICANN, thus improving security and 

privacy. In addition, two neighboring domains negotiate a 

PID for every inter-domain path between them and the PID is 

only known by them. The two domains then use the PIDs 

assigned to their interdomain paths to forward packets from 

one domain to the other. For this purpose, the routers in a 

domain maintain an interdomain routing table, which records 

the PID of each interdomain path and the border router that 

the PID originates. Furthermore, every domain in the Internet 

maintains a logically centralized (but may be physically 

distributed) resource manager (RM) used to propagate the 

reach ability information of SIDs. Particularly, when a 

content provider wants to provide a content chunk to 

consumers, he registers the SID of the content chunk to its 

local RM. The local RM then registers the SID to its 

providers or peers, by using an approach similar to the one 

used in [26]. When a content consumer wants to obtain a 

piece of content, it sends out a GET message to its local RM. 

RM forwards the GET message to that node. Otherwise, the 

RM forwards the GET message to the RM in a neighbouring 

domain (toward the content provider) over a secure channel 

between the two RMs (because of the use of intrinsic secure 

identifiers). During this process, the PIDs of inter-domain 

paths from the content provider to the content consumer are 

determined. The content provider then sends the desired 

content to the content consumer by embedding the collected 

PIDs into headers of packets for the desired content. 

 

B. Why Dynamically Changing PIDs 

It is explained that the necessity of change color to 

dynamically changing PIDs when PIDs are static. We then 

present an example to show that an attacker can launch 

Dodos attacks when he has learnt some PIDs in the network. 

 

1. Two approaches to learning PIDs:   

The first approach is to learning PIDs is GET luring, where 

an attacker uses an end host to register normal content names 

into the network, thus luring GET messages from content 

consumers. The attacker can get information about the PIDs 

in the networks because PIDs are carried by GET messages 

in the networks. We call such a process as the PID learning 

stage in the rest of this paper. Fig.1 illustrates the process of 

GET luring. For ease of presentation, we call the AS where 

the attacker locates as a luring AS and the Saes that send 

GET messages to the luring AS tempted Saes. Each node in 

Fig.1 represents an AS in the Internet, AS J is the luring AS, 

and ASes A, F, M, R, and S are the tempted ASes. At the 

beginning, ASJ registers content names into the network. 

Then, ASes A, F, M, R, and S are lured to send GET 

messages to AS J. The GET messages received by AS J are 

shown at the bottom of Fig.1. The attacker then learns the 

corresponding PIDs in the network. 
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        Fig 1: Illustration for GET luring 

 

 

 

Fig 2: Illustration for the botnet cooperation. 

 

2. Launching DDoS Attacks:  

Servers are most powerful in serving the requests because it 

has several 100Mbps of Internet. To make it busy with one 

single system with limited Internet speed up-to 1Mbps is not 

possible. DOS is based on single system, So it required large 

number of computers. This is the reason that most DOS 

attacks are actually that is Distributed-Denial of Service. 

DDOS attacks are used to bring down the websites by using 

botnet, the Botnet are uploaded in the compromised 

computer by means of any other methods like virus or 

Trojans. Virus and Trojans are placed in the Public domain 

to download, when the system or user is downloads this file 

the Trojans will settled down in the system and works for the 

creator of the Trojans. DDOS attack is launched when the 

attacker have enough systems to launch. The attacker sends 

messages from the botnet to the targeted system like websites 

.Trojans on several systems around the world, which may 

then individually begin attacking a server. This can be very 

harmful to the website, which due to lack of resources, may 

shut down for a long time and even get corrupted due to 

overloading. Note that this is a pessimistic assumption since 

the inerrability of content in information-centric networking 

is usually easy to verify [25] - [27]. Then the attacker can 

order the zombies to flood a victim that should also be along 

the learned paths. We call such a process as the attacking 

stage.We call such a process as the attacking stage. Fig. 1 

and Fig. 2 illustrate the attacking stage. We call the ASes 

where the compromised computers (that flood the victim) 

locate as attacking ASes and the AS where the victim locates 

as the victim AS. Note that an AS may play multiple roles, 

e.g., a tempted AS at the PID learning stage may be an 

attacking AS at the attacking stage. In Fig. 1, AS M is the 

victim AS, and ASes A, F, R, and S are the attacking ASes 

that are compromised by the attacker and can flood the 

victim by using the learned PIDs, as illustrated by the 

arrowed lines in Fig. 1. In Fig. 2, AS M is the victim AS, 

ASes A, F, J , R, and S are the attacking ASes, and the 

attacking traffic is represented by the arrowed lines. From the 

above descriptions, one can see that it is possible for an 

attacker to launch DDoS attacks if PIDs are kept secret but 

static. In addition, since the PIDs carried by data packets are 

popped out domain-by-domain, the victim does not know the 

PIDs to the attackers. Accordingly, it cannot trace back them. 

One may argue that we should not pop out the PIDs when 

data packets pass through domains. In that case, however, an 

attacker can try to hide himself by prepending some invalid 

PIDs at data packets. For instance, the actual PIDs from the 

content provider S to the content consumer C are PID2 and 

PID1. In order to hide himself, S can prep an invalid PID 

before PID2 and PID1. This way, the content consumer C 

cannot easily find S even if we do not pop out PIDs during 

the network, packet forwarding process. Therefore, we 

propose to defend against DDoS attacks by dynamically 

changing PIDs. 

THE D-PID DESIGN 

 

A. Overview of D-PID 

One can see that an attacker can learn a part of the PIDs used 

by domains in the Internet and launch attacks, if the PIDs are 

static. Thus, the core idea of DPID is to dynamically change 

the PID of an inter-domain path. In particular, for a given 

(virtual) path connecting two neighbouring domains A and 

B, it is assigned a PID and an update period TPID. The 

update period TPID represents how long the PID of the path 

should be changed since the PID is assigned. For instance, if 

path P1 in Fig. 4 is assigned PID1 at time t , the RMs in the 

two domains should negotiate a new PID (i.e., PID2 ) for P1 

at time t + TPID and a new update period T′PID, by using 
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the negotiation process described in Sec. III-B. At time t + 

TPID + T′PID, the two RMs will negotiate another new PID 

(i.e., PID3) for P1. Once the new PID (i.e., PID2) is assigned 

to the path, the RMs in domains A and B then distribute the 

new PID (i.e., PID2) to the routers in domains A and B (Sec. 

III-C). After that, the RMs append the new PID (i.e., PID2) 

onto GET messages if the path is chosen to carry the 

corresponding data packets. At the same time, the border 

routers forward data packets based on the new PID (i.e., 

PID2). Since some GET packets are forwarded from domain 

A (or B) to domain B (or A) by using the old PID (i.e., PID1) 

of the path, the old PID is still valid until t + TPID + T′PID. 

Without loss of generality, we assume that TPID equals to 

T′PID in the rest of this paper. That is, the update period of a 

path is fixed. Note that the new PID of the path is still known 

only by the two domains. However, it is possible that a 

communication lasts longer than two update periods. To 

address this issue, we propose a mechanism similar to the 

one that the current Internet collects the minimum MTU of 

networks so that a content consumer knows the minimum 

update period of PIDs along the path from a content provider 

to it. Based on this period, the content consumer then re-

sends a GET message to the network in order to renew the 

PIDs along the path. Note also that in D-PID, all domains 

should dynamically change the PIDs of its inter-domain 

paths. Depending on its local policy, a domain may 

simultaneously (or asynchronously) change these PIDs. In 

the former case, the cost for updating the PIDs is fixed since 

a domain only needs to distribute the new PIDs to its border 

routers once every PID update period. In the latter case, 

every time the PID of an inter-domain path is updated, the 

domain needs to distribute the new PID to its border routers. 

 

 

 

Fig 3: Illustration for PID negotiation & PID update in D-

PID. 

 

B. Negotiating PIDs 

 

Since inter-domain packet forwarding is based on PIDs, it is 

necessary to guarantee that the PIDs used by a domain are 

different from each other, even if they change dynamically. 

To achieve this, a direct approach is for domain A to notify 

its neighbouring domain B the set of PIDs that are used (or 

conversely, the set of PIDs not used) by domain A, and 

domain B chooses a PID not used by both domains A and B. 

However, domains may be reluctant to adopt this approach 

since it may leak their privacy. More importantly, a domain 

can have as much as 5,000 neighbouring domains [33] and 

may simultaneously negotiate PIDs for paths that connect the 

domain with these neighbours. As a result, two neighbouring 

domains of a domain A may simultaneously choose a 

common PID for two paths. This in turn entails multiple 

rounds of negotiation, leading to a very long negotiation 

delay. 

1. Guarantees the negotiated PIDs are unique; and 

2) Requires only one round of negotiation for each path.  

To achieve this, two domains negotiate a PID block 

represented by a PID-prefix (like an IP prefix) to every inter-

domain path between them at the bootstrapping stage when 

they interconnect with each other. This means that a PID-

prefix could be used to represent multiple inter-domain paths 

in the Internet. For instance, the PID-prefix 0x1B000000/8 is 

assigned by domains A and C to inter-domain path P2 in Fig. 

3. At the same time, it is also assigned by domains B and E 

to inter-domain path P4. This way, it is scalable for domains 

to assign PID-prefixes since it is not necessary for domains 

to globally cooperate to assign PID-prefixes to inter- domain 

paths. As IPv4 addresses, PIDs are 32-bit long in our 

implementation. First, the largest AS in the current Internet 

has about 5,000 neighbouring domains [29]. Third, PIDs 

should not be too long since using longer PIDs consumes 

more network bandwidth. 

 

C. Setting TPID and TGET 

 

In D-PID, TPID and TGET should be carefully set so that a 

legal communication will not be interrupted when PIDs 

change dynamically. To achieve this, we build a 

mathematical model to calculate the appropriate values of 

TPID and TGET. Without loss of generality, we assume that 
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there are N inter-domain paths along the path from a server 

to a client. In particular, we consider the i − th(1 ≤ i ≤ N) 

inter domain path and assume that it connects two domains A 

and B. Specifically, we call the timeout period in which a 

GET message arrives at domain A as the present timeout 

period and the GET message will be forwarded to domain B. 

We also assume that the present timeout period begins at 

time zero. In addition, we assume that the GET message 

arrives at domain A at time ti0 and the round trip time from 

domain A to the content provider is _iRTT. For ease of 

presentation, we denote the timeout period of the it path be 

TiPID. With these assumptions, if (ti0 +_iRTT) is less than 

TiPID, the corresponding data packets for the GET message 

will arrive at domain B in the same timeout period in which 

the GET message arrives at domain A. In this case, the data 

packets can be correctly forwarded to domain A. Similarly, if 

(ti0 + _iRTT) is less than 2TiPID, the corresponding data 

packets will arrive at domain B in the next timeout period, as 

shown by Fig. 4(b). In this case, the data packets also can be 

correctly forwarded to domain A because domain B is able to 

forward data packets based on the PIDs chosen for the 

present and the previous timeout periods. However, when 

(ti0+_iRTT) is larger than 2TiID, as shown in Fig. 5(c), data 

packets will be dropped by domain B.  

     This indicates that when we set TPID for an inter-domain 

path, the value should be greater than the super mum value of 

the network’s round-trip time. We know that with probability 

higher than 99.9%, the round-trip time is less than 1.5 

seconds. Therefore, we can treat the value of sup (iRTT) as 2 

seconds in practice. We now describe how to set the value of 

the GET retransmission period TGET for an active session. 

Obviously, the second GET message (i.e., the first 

retransmitted GET message) arrives at domain A at the time 

(ti0+TGET). We assume that the first one of these 

subsequent packets arrives at domain B at time (ti0 + TGET 

+ _iRTT). In the first case, ti0 and (ti0 + TGET + _iRTT) are 

in the same timeout period. In this case, when domain B 

receives the data packets sent by the server, it can correctly 

forward these data packets to domain A. In the second case, 

(ti0 + TGET + _iRTT) is in the next server, it can correctly 

forward these data packets to domain A. In the second case, 

(ti0 + TGET + _iRTT) is in the next timeout period to ti0. In 

this case, domain B also can correctly forward data packets 

to domain A because now domain B can forward packets 

based on both PID1 and PID2. In the third case, (ti0 + 

TGET+ _iRTT) is larger than 2TiPID. In this case, some data 

packets will be discarded during the period (2TiPID, ti0 

+TGET + iRTT). Therefore, to guarantee the correct data 

forwarding, it must hold that: 

                                0 2i i i

RTT PIDt T   

 

As discussed before, ti0 may be very close to TiPID, so the 

above in equation can be rewritten as: 

                              sup( ).i i

PID RTTT    

The second GET message (i.e., the first retransmitted GET 

message) arrives at domain A at the time (ti0+TGET). We 

assume that the first one of these subsequent packets arrives 

at domain B at time (ti0 + TGET + _iRTT). In the first case, 

ti0 and (ti0 + TGET + _iRTT) are in the same timeout 

period. In this case, when domain B receives the data packets 

sent by the server, it can correctly forward these data packets 

to domain A. 

                     0 2 .i i i

GET RTT PIDt T T    

The TiPID and ti0 is very close, so the above in equation can 

be rewritten as: 

                        sup( ).i i

GET PID RTTT T    

There is an N-inter domain paths between client and server, 

the data packets are forwarding correctly with the inter 

domain paths. 

               1,2.3.....min ( sup( )).i i

GET i N PID RTTT T       

 

V. RESULTS AND DISCUSSION 

 

 Prototype Design 
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                             Fig 4: The topology of prototype 

The prototype has six domains that use different intra-

domain routing protocols. The six domains are inter-

connected by 11 inter-domain paths, each of which is 

assigned with a PID  (including the routers, the RMs, and the 

end-hosts) is running on an aTCA-9300 processor blade, 

with a four-core Intel Xeon E3 1275V2 processor, an 8 GB 

DDR3-1600 memory, and six Intel I210 Gigabit Ethernet 

controllers. The RMs are implemented based on the DPDK 

platform for fast packet processing, the routers are 

implemented by using the CLICK software platform, and the 

end-hosts are implemented as a module in Linux kernel 

version 2.6.35. We now present the implementation details of 

the prototype. 

1) RMs:  Fig. 5(a) shows the structure of the implemented 

RMs, where “X-protocol” represents the local routing 

protocol used by the domain where the RM locates. The 

Registration module is used to process registration messages, 

and it stores the reach ability information of the registered 

content names into the SID Table. The GET module is used 

to process GET messages, and it queries the SID Table in 

order to determine the next hop for a GET message. The PID 

Table stores the currently used PIDs for the inter-domain 

paths associated with the domain where the RM locates. To 

support D-PID, an entry in the PID table has a timer 

recording the time that a new PID should be negotiated. 

When the negotiation completes, the PID distribution module 

distributes new PIDs to border routers in a domain. 

DPDK User Space 

 

 

 

 

 

 

 

 

 

Fig 4(b): Border Router 

 

2) Border Routers: Fig. 5(b) shows the structure of the 

implemented border routers, where “X-protocol” represents 

the local routing protocol used by the domain where the 

border router locates. The Packet Processing module is used 

to process CoLoR format packets based on the PIDs, and it 

queries the PID Table to determine the operation for an 

incoming packet (e.g., encapsulating the packet with an IPv4 

packet header and sending it to another border router). The 

PID distribution module is used to process PID update 

messages from the RM. When it receives a PID update 

message, it adds the new PID into the PID table and sends an 

acknowledgement back to the RM. 
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Fig 5(c): End hosts 

3) End Hosts: Fig. 5(c) shows the structure of the 

implemented end hosts. In particular, we embed several 

functionalities into the CoLoR stack in the Linux kernel. To 

collect the minimum TPID, the DATA module reads the 

MINIMUM PERIOD field when it receives a data packet, 

and sets the timer to resend GET messages for the associated 

session based on MINIMUM PERIOD. When the timer for 

the session times out, the GET module re-sends the GET 

message to the content provider in order to refresh the PIDs. 

When the source receives a resent GET message for an active 

session, the PID update module refreshes the PID sequence 

used by the session based on the PIDs contained in the GET 

message. 

It should include important findings discussed briefly. 

Wherever necessary, elaborate on the tables and figures 

without repeating their contents. Interpret the findings in 

view of the results obtained in this and in past studies on this 

topic. State the conclusions in a few sentences at the end of 

the paper. However, valid colored photographs can also be 

published.  

VI. PERFORMANCE ANALYSIS 

 

                                Fig 6: Datacenter trace 

Fig. 6 shows the CDF of the PID update rates of all domains 

per second, the CDF of the peak PID update rates of every 

domain, and the CDF of the mean PID update rates of every 

domain, respectively, when the mean value of the update 

period is set to different values. From the results, we can 

observe that even if the mean PID update period is 30s, the 

PID update rate is less than 10 per second with a probability 

higher than 99%. 

Table 1 The Mean GET Message Rate per second 

TGET 30s 60s 180s 300s 600s No 

PID 

DC 260.4 239.7 226.9 220.1 221.0 196.5 

Tier-1 20481 17027 14994 14202 14103 13638 

Table I shows the average number of GET messages per second for 

different TGET. From the results, we observe that the extra number 

of GET messages is about 8.2% (= (239.7−221.5)/221.5) when 

TGET is 60 seconds. When TGET increases to 300 seconds, 

however, this number is reduced to about only 1.4% (= 

(224.6−221.5)/221.5) .The number of GET messages sent by the 

content consumers per minute when TGET is 30, 60, and 180 

seconds, respectively, for the Tier-1 network data trace. From them, 

we observe that the extra number of GET messages is about 18.7% 
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(= (17027−14348)/14348) when TGET is 60 seconds. However, 

this number is reduced to about only 2.2% (= 

(14662−14348)/14348) when TGET increases to 300 seconds. 

VII. CONCLUSION 

The design, implementation of D-PID prototype is presented a 

framework that dynamically changes path identifiers (PIDs) of inter-

domain paths in order to prevent DDoS flooding attacks, when PIDs 

are used as inter-domain routing objects. We have described the 

design details of D-PID and implemented it in a 42-node prototype 

to verify its feasibility and effectiveness. We have presented 

numerical results from running experiments on the prototype. The 

results show that the time spent in negotiating and Distributing PIDs 

are quite small (in the order of ms) and D-PID is effective in 

preventing DDoS attacks. To detect and defend against DDoS 

flooding attacks by using D-PID is the best approach. 
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