

 © 2018, IJCSE All Rights Reserved 1085

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

Controlling Distributed Denial-of-Service Attacks through

Dynamic Path Identifiers

N. Vijay
1*

, M. Sakthivel
2

1*

 Department of Computer Science and Engineering, Sree Vidyanikethan Engineering College, Tirupati, Andhra Pradesh,

India.
2
 Department of Computer Science and Engineering, Sree Vidyanikethan Engineering College, Tirupati, Andhra Pradesh, India

*Corresponding Author: nagoorvijayit48@gmail.com, Tel.: +91-8374698898

Available online at: www.ijcseonline.org

Accepted: 03/Jul/2018, Published: 31/Jul/2018

Abstract— A Distributed Denial of Service flooding attack in the network performed implicitly and as well as explicitly by the

attacker or victim. This attempt is performed to overload the server, generate malicious traffic or interrupting the service. This

issue crashes the host and the host’s service will be unavailable to the legitimate users. The enterprise, employment, and

assessment of D-PID, a basis that uses PIDs transferred between adjacent domains as inter-domain routing objects. In DPID,

the PID of an inter-domain path linking two domains is reserved clandestine and changes animatedly. We label in part how

neighbouring domains negotiate PIDs, how to uphold constant communications when PIDs change. We shape a 42-node

sample comprised by six domains to prove D-PID’s possibility and demeanour widespread admirations to gauge its efficacy

and charge.

Keywords—Inter-domain routing, security, Distributed Denail-of-Service (DDoS), path identifiers

I. INTRODUCTION

In recent years major threat in computer world is DDoS

attacks. The DDoS come from the Denial of service (DoS)

attacks; Where DoS is early used by the underground

attackers to bring down the services of Organizations. It is

very easy to performed this attack because the tools (for

example Trinoo) required of this attacks are available in

internet for free downloadable and easy to use .Distributed

denial of service (DDoS) attack, which makes a server suffer

in having slow responses to clients or even refusing their

accesses, is one of the major threats which will continue in

the future. DDoS attack is targets the important resources

like banks and other similar organizations to make the

important information to access or publish to everyone or

some persons. It works distribute over a wide range of

systems to launch this attacks to bring down the website by

continuously sending requests to access the resources and

make it to denial other requests. Distributed denial-of-

service (DDoS) flooding attacks are very harmful to the

Internet. In a DDoS attack, the attacker uses widely

distributed zombies to send a large amount of traffic to the

target system, thus preventing legitimate users from

accessing to network resources [1]. For example, a DDoS

attack against BBC sites in Jan. 2016 reached 602 gigabits

per second and “took them down for at least three hours” [3].

More recently, the hosting provider OVH suffered a large

scale DDoS attack in Sep. 2016, launched by a botnet

composed at least of 150,000 Internet-of-things (IoT)

devices. This attack peaked at nearly one terabit per second

(Tbps) and even forced Akamai to stop offering DDoS

protection to OVH [2]. Therefore, many approaches [4] have

been proposed in order to prevent DDoS flooding attacks,

including network ingress filtering [5] - [9], IP trace back

[10] - [14], capability-based designs [15] - [18], and shut-up

messages [19] - [20]. At the same time, in recent years there

are increasing interests in using path identifiers PIDs that

identify paths between network entities as inter-domain

routing objects, since doing this not only helps addressing

the routing scalability and multi-path routing issues [21], but

also can facilitate the innovation and adoption of different

routing architectures [22]. For instance, Godfrey et al.

proposed path let routing [21], in which networks advertise

the PIDs of path lets throughout the Internet and a sender in

the network constructs its selected path lets into an end-to-

end source route. There are two different use cases of PIDs in

the aforementioned approaches. In the first case, the PIDs are

globally advertised (as in path let routing [21] and [22]). As a

result, an end user knows the PID(s) toward any node in the

network. Accordingly, attackers can launch DDoS flooding

attacks as they do in the current Internet. In the second case,

conversely, PIDs are only known by the network and are

secret to end users (as in LIPSIN [23]. In the latter case, the

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1086

network adopts an information-centric approach [25] - [27]

where an end user (i.e., a content provider) knows the PID(s)

toward a destination (i.e., a content consumer) only when the

destination sends a content request message to the end user.

After knowing the PID(s), the end user sends packets of the

content to the destination by encapsulating the PID(s) into

the packet headers. Routers in the network then forward the

packets to the destination based on the PIDs. It seems that

keeping PIDs secret to end users (as in [23], [24]) makes it

difficult for attackers to launch DDoS flooding attacks since

they do not know the PIDs in the network. Due to the static

nature of the PIDs it is not enough to keeping the PIDs secret

form the end users as a preventing step for DDoS flooding

attacks. For example, Antikainen et al. argued that an

adversary can construct novel filters (i.e., PIDs) based on

existing ones and even obtain the link identifiers through

reverse-engineering, thus launching DDoS flooding attacks

[28]. Moreover, attackers can launch DDoS flooding attacks

by learning PIDs if they are static. To overcome this issue

the dynamic PID (D-PID) mechanism is design,

implementation and evaluation is presented in this research.

In D-PID, two adjacent domains periodically update the PIDs

between them and install the new PIDs into the data plane for

packet forwarding. Even if the attacker obtains the PIDs to

its target and sends the malicious packets successfully, these

PIDs will become invalid after a certain period and the

subsequent attacking packets will be discarded by the

network. Moreover, if the attacker tries to obtain the new

PIDs and keep a DDoS flooding attack going, it not only

significantly increases the attacking cost, but also makes it

easy to detect the attack. In particular, our main contributions

are twofold.

On one hand, we propose the D-PID design by addressing

the following challenges. First, how and how often should

PIDs change while respecting local policies of autonomous

systems (ASes)? To address this challenge, D-PID let’s

neighboring domains negotiates the PIDs for their inter-

domain paths based on their local policies. It is mandatory

for legitimate communications to maintain its

communications to prevent illegal communications while

changing the PIDs because inter-domain packet forwarding

uses PIDs which changes. Overcome this problem, D-PID

lets every domain distribute its PIDs to the routers in the

domain. Third, the overheads incurred by changing PIDs

should be kept as small as possible.(It has Passover overhead

for neighboring domains to pass PIDs and also have

distributed overhead of updated PIDs for domains. This is

experimented with 42-node prototype over six domains to

verify and compare D-PIDs feasibility.

As a last paragraph of the introduction should provide

organization of the paper/article (Rest of the paper is

organized as follows, Section I contains the introduction of

DDoS attacks, Section II contain the related work of DDoS

flooding attacks, Section III contain the problem statement of

Dynamic path identifier, Section IV contain the background

work and motivation, section V explain the prototype

methodology, Section VI describes results and discussion

about D-PID over the DDoS attacks , Section VII explains

the conclusion.

II. RELATED WORK

Because of the complexity and difficulty in defending against

DDoS flooding attacks, many approaches have been

proposed in past two decades. For instance, filtering-based

approaches aim at mitigating DDoS flooding attacks by

deploying source address filtering at routers [5] - [9].

Similarly, IP trace back-based methods trace attacks back

through the network toward the attacking sources [10] - [14].

In addition, the approaches proposed in [19] - [20] aim at

mitigating DDoS attacks by sending shut-up messages to the

attacking sources, assuming that they will cooperate and stop

flooding. While there are too many literatures, we refer

interested readers to [4] for a survey on existing approaches

in defending again DDoS flooding attacks. Instead, we

outline prior work closely related to this work and compare

D-PID with them. A main reason that DDoS flooding attacks

proliferate is a node can send any amount of data packets to

any destination, regardless whether or not the destination

wants the packets. To address this issue, several approaches

have been proposed. In the “off by default” approach [15],

two hosts are not permitted to communicate by default.

Instead, an end host explicitly signals, and routers exchange,

the IP-prefixes that the end host wants to receive data packets

from them by using an IP-level control protocol. The D-PID

design is similar in spirit, since D-PID dynamically changes

PIDs and a content provider can send data packets to a

destination only when the destination explicitly sends out a

GET message that is routed (by name) to the content

provider. However, there are two important differences.

First, the “off by default” approach works at the IP-prefix

granularity, but D-PID is based on an information-centric

network architecture and works at the content granularity.

Second, the IP-prefixes that an end host wants to receive

packets from are propagated throughout the Internet in the

“off by default” approach, which may cause significant

routing dynamics if the allowed IP-prefixes of end hosts

change frequently. On the other hand, the PIDs are kept

secret and change dynamically in D-PID. While this incurs

cost since destinations need to re-send GET messages, the

results presented in Sec. V show that the cost is fairly small.

The capability-based designs [16] - [17] also share the same

spirit with “off by default” and D-PID. In these approaches, a

sender first obtains the permission from the destination in

order to send data packets to it. The destination provides the

capabilities to the sender if it wants to receive packets from

the sender. The sender then embeds the obtained capabilities

into packets. Routers along the path from the sender to the

destination verify the capabilities in order to check whether

or not the destination wants to receive the packets. If not, the

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1087

routers simply discard the packets. D-PID differentiates from

the capability-based approaches in two aspects. One hand,

communications are initiated by receivers in D-PID but by

senders in capability based approaches. On the other hand,

the capability-based approaches are vulnerable to “denial-of

capability” attacks, where compromised computer(s) sends

plenty of capability requests to a victim, thus preventing

normal users to obtain the capability from the victim. By

contrast, D-PID effectively mitigates such attacks because of

three reasons. First, the GET messages carry the PIDs along

the paths from the compromised computers to the victim.

Second, the PIDs are negotiated by neighbouring domains

that can verify the authenticity of PIDs when they forward

GET messages.

III.PROBLEM STATEMENT

 The impact off DDoS Flooding attack ranges from the

simple inconvenience to use a particular service to causing

major failures at the targeted server. The existing methods

used static path identifiers(S-PIDs) for communication

between the routers or resource manager or systems. Due to

the static nature it is easy to launch an attack by an attacker

like DDoS flooding attacks. To overcome this issue,

Dynamic path identifiers (D-PIDs) are one of the proposed

methods to detect and defend the DDoS flooding attacks.

IV. METHODOLOGY

BACKGROUND AND MOTIVATION

A. Brief Introduction to CoLoR

CoLoR is a receiver-driven information centric network

architecture that assigns unique and persistent content names

(or service identifiers, SIDs) to content chunks. As in [20]

and [27], CoLoR assigns intrinsic secure self-certifying node

identifiers (NIDs) to network nodes and ASes so that

authenticating a node/AS does not require an external

authority such as ICANN, thus improving security and

privacy. In addition, two neighboring domains negotiate a

PID for every inter-domain path between them and the PID is

only known by them. The two domains then use the PIDs

assigned to their interdomain paths to forward packets from

one domain to the other. For this purpose, the routers in a

domain maintain an interdomain routing table, which records

the PID of each interdomain path and the border router that

the PID originates. Furthermore, every domain in the Internet

maintains a logically centralized (but may be physically

distributed) resource manager (RM) used to propagate the

reach ability information of SIDs. Particularly, when a

content provider wants to provide a content chunk to

consumers, he registers the SID of the content chunk to its

local RM. The local RM then registers the SID to its

providers or peers, by using an approach similar to the one

used in [26]. When a content consumer wants to obtain a

piece of content, it sends out a GET message to its local RM.

RM forwards the GET message to that node. Otherwise, the

RM forwards the GET message to the RM in a neighbouring

domain (toward the content provider) over a secure channel

between the two RMs (because of the use of intrinsic secure

identifiers). During this process, the PIDs of inter-domain

paths from the content provider to the content consumer are

determined. The content provider then sends the desired

content to the content consumer by embedding the collected

PIDs into headers of packets for the desired content.

B. Why Dynamically Changing PIDs

It is explained that the necessity of change color to

dynamically changing PIDs when PIDs are static. We then

present an example to show that an attacker can launch

Dodos attacks when he has learnt some PIDs in the network.

1. Two approaches to learning PIDs:

The first approach is to learning PIDs is GET luring, where

an attacker uses an end host to register normal content names

into the network, thus luring GET messages from content

consumers. The attacker can get information about the PIDs

in the networks because PIDs are carried by GET messages

in the networks. We call such a process as the PID learning

stage in the rest of this paper. Fig.1 illustrates the process of

GET luring. For ease of presentation, we call the AS where

the attacker locates as a luring AS and the Saes that send

GET messages to the luring AS tempted Saes. Each node in

Fig.1 represents an AS in the Internet, AS J is the luring AS,

and ASes A, F, M, R, and S are the tempted ASes. At the

beginning, ASJ registers content names into the network.

Then, ASes A, F, M, R, and S are lured to send GET

messages to AS J. The GET messages received by AS J are

shown at the bottom of Fig.1. The attacker then learns the

corresponding PIDs in the network.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1088

 Fig 1: Illustration for GET luring

Fig 2: Illustration for the botnet cooperation.

2. Launching DDoS Attacks:

Servers are most powerful in serving the requests because it

has several 100Mbps of Internet. To make it busy with one

single system with limited Internet speed up-to 1Mbps is not

possible. DOS is based on single system, So it required large

number of computers. This is the reason that most DOS

attacks are actually that is Distributed-Denial of Service.

DDOS attacks are used to bring down the websites by using

botnet, the Botnet are uploaded in the compromised

computer by means of any other methods like virus or

Trojans. Virus and Trojans are placed in the Public domain

to download, when the system or user is downloads this file

the Trojans will settled down in the system and works for the

creator of the Trojans. DDOS attack is launched when the

attacker have enough systems to launch. The attacker sends

messages from the botnet to the targeted system like websites

.Trojans on several systems around the world, which may

then individually begin attacking a server. This can be very

harmful to the website, which due to lack of resources, may

shut down for a long time and even get corrupted due to

overloading. Note that this is a pessimistic assumption since

the inerrability of content in information-centric networking

is usually easy to verify [25] - [27]. Then the attacker can

order the zombies to flood a victim that should also be along

the learned paths. We call such a process as the attacking

stage.We call such a process as the attacking stage. Fig. 1

and Fig. 2 illustrate the attacking stage. We call the ASes

where the compromised computers (that flood the victim)

locate as attacking ASes and the AS where the victim locates

as the victim AS. Note that an AS may play multiple roles,

e.g., a tempted AS at the PID learning stage may be an

attacking AS at the attacking stage. In Fig. 1, AS M is the

victim AS, and ASes A, F, R, and S are the attacking ASes

that are compromised by the attacker and can flood the

victim by using the learned PIDs, as illustrated by the

arrowed lines in Fig. 1. In Fig. 2, AS M is the victim AS,

ASes A, F, J , R, and S are the attacking ASes, and the

attacking traffic is represented by the arrowed lines. From the

above descriptions, one can see that it is possible for an

attacker to launch DDoS attacks if PIDs are kept secret but

static. In addition, since the PIDs carried by data packets are

popped out domain-by-domain, the victim does not know the

PIDs to the attackers. Accordingly, it cannot trace back them.

One may argue that we should not pop out the PIDs when

data packets pass through domains. In that case, however, an

attacker can try to hide himself by prepending some invalid

PIDs at data packets. For instance, the actual PIDs from the

content provider S to the content consumer C are PID2 and

PID1. In order to hide himself, S can prep an invalid PID

before PID2 and PID1. This way, the content consumer C

cannot easily find S even if we do not pop out PIDs during

the network, packet forwarding process. Therefore, we

propose to defend against DDoS attacks by dynamically

changing PIDs.

THE D-PID DESIGN

A. Overview of D-PID

One can see that an attacker can learn a part of the PIDs used

by domains in the Internet and launch attacks, if the PIDs are

static. Thus, the core idea of DPID is to dynamically change

the PID of an inter-domain path. In particular, for a given

(virtual) path connecting two neighbouring domains A and

B, it is assigned a PID and an update period TPID. The

update period TPID represents how long the PID of the path

should be changed since the PID is assigned. For instance, if

path P1 in Fig. 4 is assigned PID1 at time t , the RMs in the

two domains should negotiate a new PID (i.e., PID2) for P1

at time t + TPID and a new update period T′PID, by using

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1089

the negotiation process described in Sec. III-B. At time t +

TPID + T′PID, the two RMs will negotiate another new PID

(i.e., PID3) for P1. Once the new PID (i.e., PID2) is assigned

to the path, the RMs in domains A and B then distribute the

new PID (i.e., PID2) to the routers in domains A and B (Sec.

III-C). After that, the RMs append the new PID (i.e., PID2)

onto GET messages if the path is chosen to carry the

corresponding data packets. At the same time, the border

routers forward data packets based on the new PID (i.e.,

PID2). Since some GET packets are forwarded from domain

A (or B) to domain B (or A) by using the old PID (i.e., PID1)

of the path, the old PID is still valid until t + TPID + T′PID.

Without loss of generality, we assume that TPID equals to

T′PID in the rest of this paper. That is, the update period of a

path is fixed. Note that the new PID of the path is still known

only by the two domains. However, it is possible that a

communication lasts longer than two update periods. To

address this issue, we propose a mechanism similar to the

one that the current Internet collects the minimum MTU of

networks so that a content consumer knows the minimum

update period of PIDs along the path from a content provider

to it. Based on this period, the content consumer then re-

sends a GET message to the network in order to renew the

PIDs along the path. Note also that in D-PID, all domains

should dynamically change the PIDs of its inter-domain

paths. Depending on its local policy, a domain may

simultaneously (or asynchronously) change these PIDs. In

the former case, the cost for updating the PIDs is fixed since

a domain only needs to distribute the new PIDs to its border

routers once every PID update period. In the latter case,

every time the PID of an inter-domain path is updated, the

domain needs to distribute the new PID to its border routers.

Fig 3: Illustration for PID negotiation & PID update in D-

PID.

B. Negotiating PIDs

Since inter-domain packet forwarding is based on PIDs, it is

necessary to guarantee that the PIDs used by a domain are

different from each other, even if they change dynamically.

To achieve this, a direct approach is for domain A to notify

its neighbouring domain B the set of PIDs that are used (or

conversely, the set of PIDs not used) by domain A, and

domain B chooses a PID not used by both domains A and B.

However, domains may be reluctant to adopt this approach

since it may leak their privacy. More importantly, a domain

can have as much as 5,000 neighbouring domains [33] and

may simultaneously negotiate PIDs for paths that connect the

domain with these neighbours. As a result, two neighbouring

domains of a domain A may simultaneously choose a

common PID for two paths. This in turn entails multiple

rounds of negotiation, leading to a very long negotiation

delay.

1. Guarantees the negotiated PIDs are unique; and

2) Requires only one round of negotiation for each path.

To achieve this, two domains negotiate a PID block

represented by a PID-prefix (like an IP prefix) to every inter-

domain path between them at the bootstrapping stage when

they interconnect with each other. This means that a PID-

prefix could be used to represent multiple inter-domain paths

in the Internet. For instance, the PID-prefix 0x1B000000/8 is

assigned by domains A and C to inter-domain path P2 in Fig.

3. At the same time, it is also assigned by domains B and E

to inter-domain path P4. This way, it is scalable for domains

to assign PID-prefixes since it is not necessary for domains

to globally cooperate to assign PID-prefixes to inter- domain

paths. As IPv4 addresses, PIDs are 32-bit long in our

implementation. First, the largest AS in the current Internet

has about 5,000 neighbouring domains [29]. Third, PIDs

should not be too long since using longer PIDs consumes

more network bandwidth.

C. Setting TPID and TGET

In D-PID, TPID and TGET should be carefully set so that a

legal communication will not be interrupted when PIDs

change dynamically. To achieve this, we build a

mathematical model to calculate the appropriate values of

TPID and TGET. Without loss of generality, we assume that

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1090

there are N inter-domain paths along the path from a server

to a client. In particular, we consider the i − th(1 ≤ i ≤ N)

inter domain path and assume that it connects two domains A

and B. Specifically, we call the timeout period in which a

GET message arrives at domain A as the present timeout

period and the GET message will be forwarded to domain B.

We also assume that the present timeout period begins at

time zero. In addition, we assume that the GET message

arrives at domain A at time ti0 and the round trip time from

domain A to the content provider is _iRTT. For ease of

presentation, we denote the timeout period of the it path be

TiPID. With these assumptions, if (ti0 +_iRTT) is less than

TiPID, the corresponding data packets for the GET message

will arrive at domain B in the same timeout period in which

the GET message arrives at domain A. In this case, the data

packets can be correctly forwarded to domain A. Similarly, if

(ti0 + _iRTT) is less than 2TiPID, the corresponding data

packets will arrive at domain B in the next timeout period, as

shown by Fig. 4(b). In this case, the data packets also can be

correctly forwarded to domain A because domain B is able to

forward data packets based on the PIDs chosen for the

present and the previous timeout periods. However, when

(ti0+_iRTT) is larger than 2TiID, as shown in Fig. 5(c), data

packets will be dropped by domain B.

 This indicates that when we set TPID for an inter-domain

path, the value should be greater than the super mum value of

the network’s round-trip time. We know that with probability

higher than 99.9%, the round-trip time is less than 1.5

seconds. Therefore, we can treat the value of sup (iRTT) as 2

seconds in practice. We now describe how to set the value of

the GET retransmission period TGET for an active session.

Obviously, the second GET message (i.e., the first

retransmitted GET message) arrives at domain A at the time

(ti0+TGET). We assume that the first one of these

subsequent packets arrives at domain B at time (ti0 + TGET

+ _iRTT). In the first case, ti0 and (ti0 + TGET + _iRTT) are

in the same timeout period. In this case, when domain B

receives the data packets sent by the server, it can correctly

forward these data packets to domain A. In the second case,

(ti0 + TGET + _iRTT) is in the next server, it can correctly

forward these data packets to domain A. In the second case,

(ti0 + TGET + _iRTT) is in the next timeout period to ti0. In

this case, domain B also can correctly forward data packets

to domain A because now domain B can forward packets

based on both PID1 and PID2. In the third case, (ti0 +

TGET+ _iRTT) is larger than 2TiPID. In this case, some data

packets will be discarded during the period (2TiPID, ti0

+TGET + iRTT). Therefore, to guarantee the correct data

forwarding, it must hold that:

 0 2i i i

RTT PIDt T

As discussed before, ti0 may be very close to TiPID, so the

above in equation can be rewritten as:

 sup().i i

PID RTTT

The second GET message (i.e., the first retransmitted GET

message) arrives at domain A at the time (ti0+TGET). We

assume that the first one of these subsequent packets arrives

at domain B at time (ti0 + TGET + _iRTT). In the first case,

ti0 and (ti0 + TGET + _iRTT) are in the same timeout

period. In this case, when domain B receives the data packets

sent by the server, it can correctly forward these data packets

to domain A.

 0 2 .i i i

GET RTT PIDt T T

The TiPID and ti0 is very close, so the above in equation can

be rewritten as:

 sup().i i

GET PID RTTT T

There is an N-inter domain paths between client and server,

the data packets are forwarding correctly with the inter

domain paths.

 1,2.3.....min (sup()).i i

GET i N PID RTTT T

V. RESULTS AND DISCUSSION

 Prototype Design

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1091

 Fig 4: The topology of prototype

The prototype has six domains that use different intra-

domain routing protocols. The six domains are inter-

connected by 11 inter-domain paths, each of which is

assigned with a PID (including the routers, the RMs, and the

end-hosts) is running on an aTCA-9300 processor blade,

with a four-core Intel Xeon E3 1275V2 processor, an 8 GB

DDR3-1600 memory, and six Intel I210 Gigabit Ethernet

controllers. The RMs are implemented based on the DPDK

platform for fast packet processing, the routers are

implemented by using the CLICK software platform, and the

end-hosts are implemented as a module in Linux kernel

version 2.6.35. We now present the implementation details of

the prototype.

1) RMs: Fig. 5(a) shows the structure of the implemented

RMs, where “X-protocol” represents the local routing

protocol used by the domain where the RM locates. The

Registration module is used to process registration messages,

and it stores the reach ability information of the registered

content names into the SID Table. The GET module is used

to process GET messages, and it queries the SID Table in

order to determine the next hop for a GET message. The PID

Table stores the currently used PIDs for the inter-domain

paths associated with the domain where the RM locates. To

support D-PID, an entry in the PID table has a timer

recording the time that a new PID should be negotiated.

When the negotiation completes, the PID distribution module

distributes new PIDs to border routers in a domain.

DPDK User Space

Fig 4(b): Border Router

2) Border Routers: Fig. 5(b) shows the structure of the

implemented border routers, where “X-protocol” represents

the local routing protocol used by the domain where the

border router locates. The Packet Processing module is used

to process CoLoR format packets based on the PIDs, and it

queries the PID Table to determine the operation for an

incoming packet (e.g., encapsulating the packet with an IPv4

packet header and sending it to another border router). The

PID distribution module is used to process PID update

messages from the RM. When it receives a PID update

message, it adds the new PID into the PID table and sends an

acknowledgement back to the RM.

 Fig 5(a): Resource Manager

DPDK lib DPDK driver

Policy Store

PID distribution PIDtable SIDtable

PID distribution PID Table

Packet processing

Encap/Decap X-protocol header

NIC NIC

Application SID control

API (SID, PID_num)

PID (1,..,PID_num)

Da Data delivery

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1092

User space

Color

Active socket

Fig 5(b): Border Router

Physical Physical

NICs

Fig 5(c): End hosts

3) End Hosts: Fig. 5(c) shows the structure of the

implemented end hosts. In particular, we embed several

functionalities into the CoLoR stack in the Linux kernel. To

collect the minimum TPID, the DATA module reads the

MINIMUM PERIOD field when it receives a data packet,

and sets the timer to resend GET messages for the associated

session based on MINIMUM PERIOD. When the timer for

the session times out, the GET module re-sends the GET

message to the content provider in order to refresh the PIDs.

When the source receives a resent GET message for an active

session, the PID update module refreshes the PID sequence

used by the session based on the PIDs contained in the GET

message.

It should include important findings discussed briefly.

Wherever necessary, elaborate on the tables and figures

without repeating their contents. Interpret the findings in

view of the results obtained in this and in past studies on this

topic. State the conclusions in a few sentences at the end of

the paper. However, valid colored photographs can also be

published.

VI. PERFORMANCE ANALYSIS

 Fig 6: Datacenter trace

Fig. 6 shows the CDF of the PID update rates of all domains

per second, the CDF of the peak PID update rates of every

domain, and the CDF of the mean PID update rates of every

domain, respectively, when the mean value of the update

period is set to different values. From the results, we can

observe that even if the mean PID update period is 30s, the

PID update rate is less than 10 per second with a probability

higher than 99%.

Table 1 The Mean GET Message Rate per second

TGET 30s 60s 180s 300s 600s No

PID

DC 260.4 239.7 226.9 220.1 221.0 196.5

Tier-1 20481 17027 14994 14202 14103 13638

Table I shows the average number of GET messages per second for

different TGET. From the results, we observe that the extra number

of GET messages is about 8.2% (= (239.7−221.5)/221.5) when

TGET is 60 seconds. When TGET increases to 300 seconds,

however, this number is reduced to about only 1.4% (=

(224.6−221.5)/221.5) .The number of GET messages sent by the

content consumers per minute when TGET is 30, 60, and 180

seconds, respectively, for the Tier-1 network data trace. From them,

we observe that the extra number of GET messages is about 18.7%

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 1093

(= (17027−14348)/14348) when TGET is 60 seconds. However,

this number is reduced to about only 2.2% (=

(14662−14348)/14348) when TGET increases to 300 seconds.

VII. CONCLUSION

The design, implementation of D-PID prototype is presented a

framework that dynamically changes path identifiers (PIDs) of inter-

domain paths in order to prevent DDoS flooding attacks, when PIDs

are used as inter-domain routing objects. We have described the

design details of D-PID and implemented it in a 42-node prototype

to verify its feasibility and effectiveness. We have presented

numerical results from running experiments on the prototype. The

results show that the time spent in negotiating and Distributing PIDs

are quite small (in the order of ms) and D-PID is effective in

preventing DDoS attacks. To detect and defend against DDoS

flooding attacks by using D-PID is the best approach.

REFERENCES

 [1]Francois, I. Aib, and R. Boutaba, “Firecol: a Collaborative Protection

Network for the Detection of Flooding ddos Attacks,” IEEE/ACM

Trans.on Netw., vol. 20, no. 6, Dec. 2012, pp. 1828-1841.

[2] OVH hosting suffers 1Tbps DDoS attack: largest Internet has ever

seen. [Online] Available: https: //www.hackread.com/ovh-

hostingsuffers- 1tbps- ddos-attack/.

[3] 602 Gbps! This May Have Been the Largest DDoS

AttackinHistory.http://thehackernews.com/2016/01/biggest-ddos-

attack.html.

[4] S. T. Zargar, J. Joshi, D. Tipper, “A Survey of Defense Mechanisms

Against Distributed Denial of Service (DDoS) Flooding Attacks,”

IEEECommun. Surv. & Tut., vol. 15, no. 4, pp. 2046 - 2069, Nov.

2013.

[5] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating

Denial of Service Attacks that Employ IP Source Address Spoofing,”

IETF Internet RFC 2827, May 2000.

[6] K. Park and H. Lee, “On the Effectiveness of Route-Based Packet

Filtering for Distributed DoS Attack Prevention in Power-Law

Internets,” In Proc. SIGCOMM’01, Aug. 2001, San Diego, CA, USA.

[7] A. Yaar, A. Perrig, D. Song, “StackPi: New Packet Marking and

Filtering Mechanisms for DDoS and IP Spoofing Defense,” IEEE J. on

Sel. Areas in Commun., vol. 24, no. 10, pp. 1853 - 1863, Oct. 2006.

[8] H. Wang, C. Jin, K. G. Shin, “Defense Against Spoofed IP Traffic

Using Hop-Count Filtering,” IEEE/ACM Trans. on Netw., vol. 15, no.

1, pp. 40 - 53, Feb. 2007.

[9] Z. Duan, X. Yuan, J. Chandrashekar, “Controlling IP Spoofing through

Interdomain Packet Filters,” IEEE Trans. on Depend. and Secure

Computing, vol. 5, no. 1, pp. 22 - 36, Feb. 2008.

[10] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical

Network Support for IP Traceback,” In Proc. SIGCOMM’00, Aug.

2000, Stockholm, Sweden.

[11] A. C. Snoeren, C. Partridge, L. Sanchez, C. E. Jones, F. Tchakountio,

S. T. Kent, and W. T. Strayer, “Hash-Based IP Traceback,” In

Proc.SIGCOMM’01, Aug. 2001, San Diego, CA, USA.

[12] M. Sung, J. Xu, “IP traceback-based intelligent packet filtering: a

novel technique for defending against Internet DDoS attacks,” IEEE

Trans. OnParall. and Distr. Sys., vol. 14, no. 9, pp. 861 - 872, Sep.

2003.

[13] M. Sung, J. Xu, J. Li, L. Li, “Large-Scale IP Traceback in High-

Speed Internet: Practical Techniques and Information-Theoretic

Foundation,” IEEE/ACM Trans. on Netw., vol. 16, no. 6, pp. 1253 -

1266, Dec. 2008.

[14] Y. Xiang, K. Li, W. Zhou, “Low-Rate DDoS Attacks Detection and

Traceback by Using New Information Metrics,” IEEE Trans. on

Inf.Foren. and Sec., vol. 6, no. 2, pp. 426 - 437, May 2011.

[15] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, S. Shenker, “Off

by default!,” In Proc. HotNets-IV, Nov. 2005, College Park, MD, USA.

[16] A. Yaar, A. Perrig, and D. Song, “SIFF: a stateless internet flow filter

to mitigate DDoS flooding attacks,” In Proc. IEEE Symposium on

Securityand Privacy, May 2004, Oakland, CA, USA.

[17] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y. Hu,

“Portcullis: Protecting connection setup from denial-of-capability

attacks,” In Proc. SIGCOMM’07, Aug.2007, Kyoto, Japan.

[18] X. Yang, D. Wetherall, and T. Anderson, “TVA: A DoS-Limiting

Network Architecture,” IEEE/ACM Trans. on Netw., vol. 16, no. 3, pp.

1267 - 1280, Jun. 2008.

[19] X. Liu, X. Yang, and Y. Lu, “To Filter or to Authorize: Network-

Layer DoS Defense Against Multimillion-node Botnets,” In Proc.

SIGCOMM’ 08, Aug. 2008, Seattle, WA, USA.

[20] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D.

Moon, and S. Shenker, “Accountable Internet Protocol (AIP),” In Proc.

SIGCOMM’ 08, Aug. 2008, Seattle, WA, USA.

[21] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet

routing,” in Proc. SIGCOMM’09, Aug. 2009, Barcelona, Spain, pp. 111

- 122.

[22] T. Koponen, S. Shenker, H. Balakrishnan, N. Feamster, I. Ganichev,

A. Ghodsi, P. B. Godfrey, N. McKwoen, G. Parulkar, B. Raghavan, J.

Rexford, S. Arianfar, D. Kuptsov, “Architecting for innovation,” ACM

Comput. Commun. Rev., vol. 41, no. 3, July 2011, pp. 24 - 36.

[23] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, P. Nikander,

“LIPSIN: Line Speed Publish/Subscribe Inter- networking,” in Proc.

SIGCOMM’09, Aug. 2009, Barcelona, Spain, pp. 195 - 206.

[24] H. Luo, Z. Chen, J. Cui, H. Zhang, M. Zukerman, C. Qiao, “CoLoR:

an information-centric internet architecture for innovations,” IEEE

Network, vol. 28, no. 3, pp. 4 - 10, May 2014.

[25] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P.

Crowley, C. Papadopoulos, L. Wang, and B. Zhang, “Named data

networking,” ACM Comput. Commun. Rev., vol. 44, no. 3, pp. 66 - 73,

Jul. 2014.

[26] T. Koponen, M. Chawla, B. C G. Chun, A. Ermolinskiy, K. H. Kim,

S. Shenker, I. Stoica, “A data-oriented (and beyond) network

architecture,” in Proc. SIGCOMM’07, Aug. 2007, Kyoto, Japan, pp.

181 - 192.

[27] D. Raychaudhuri, K. Nagaraja, A. Venkataramani, “MobilityFirst: a

robust and trustworthy mobility-centric architecture for the future

Internet,” Mobile Comput. and Comm. Rev., vol. 16, no. 3, pp. 2 - 13,

Jul. 2012.

[28] M. Antikainen, T. Aura, M. Sarela, “Denial-of-service attacks in

bloomfilter- based forwarding,” IEEE/ACM Trans. on Netw., vol. 22,

no. 5, pp. 1463 - 1476, Oct. 2014.

[29] BGP Peer Report. http://bgp.he.net/report/peers/.

Authors Profile

Mr. N Vijay pursed Bachelor’s of Technology from University of

Jawaharlal Nehru Technological University, Anantapur, Andhra

pradesh in 2015 and He is currently pursuing his M.Tech Computer

Networks and Information Security in Sree Vidyanikethan

Engineering College Tirupati, Andhra Pradesh. His main

research work focuses on Cryptography, Information Security, Big

Data Analytics, Data Mining and IoT.

Dr. .M. Sakthivel, Associate Professor,Sree Vidyanikethan

Enginnering College, Tirupathi, Andhra Pradesh.

